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Abstract

This paper develops a new framework of level-k DSGE for monetary policy analysis.

Incomplete markets are introduced to guarantee the eductive stability of the equilibrium.

k=1.334 is estimated using growth and inflation forecasts from the Michigan Survey of

Consumers, capturing the missing indirect channels and the weakened direct channels in

households’ forecast rules, as well as the wedge between forecasts and realizations. The

model produces inflation inertia under Taylor Rule. In pre-Volcker era, more active GDP

targeting generates more output mean reversion both in forecasts and in realizations. In

Great Recession, the model can explain the missing drop of both inflation and inflation

expectations, as well as the stagnant recovery expectations that leads to slow recovery.

The model also implies both dampening and accumulation effects of forward guidance.

When k → +∞, the level-k DSGE reduces to a basic three equation New Keynesian

DSGE model as in Gaĺı (2015).
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1 Introduction

The prevalent DSGE models for monetary policy analysis1 usually impose two assumptions on

expectations. First, agents know the aggregate states. Second, agents know the aggregate law

of motion. Although these assumptions are often rejected by data, there is less consensus on

what alternatives2 we should make, and in what circumstances it is necessary. In this paper,

I relax the second assumption, and develop a new framework of level-k DSGE, based on the

idea proposed by Farhi and Werning (2017). The essence of level-k is to turn off the subtle

general equilibrium effects in expectations that arise from more than k−1 layers of feedbacks.

This framework is appealing because it has straight forward setup, transparent mechanisms,

sharp empirical support, and reasonable performance under multiple monetary policies.

My first contribution is to lay the foundation for level-k DSGE models. The standard setup of

level-k in games (Crawford, Costa-Gomes, and Iriberri, 2013) that level-k players best reply

to level-(k-1) is no long sufficient in a DSGE environment for two reasons. First, the ex post

budget balance requires agents to observe the prices when making decisions, so that a temporal

equilibrium (Grandmont, 1977) structure needs to be imposed as in Farhi and Werning (2017).

Second, there can potentially be endogenous state variables3. As a result, states determine

expectations, expectations drive decisions and decisions affect states. This loop needs to be

addressed using a recursive structure. Perceiving all others as one level below is formalized as

taking the actual equilibrium objects one level below as the perceived equilibrium objects for

decision making. All forecasts are made based on rules as functions of the aggregate states. In

addition, the model also allows for non-integer levels by assuming a level-1.3 agent perceiving

30% of the others as level-1 and the rest as level-04. Therefore, the level-k DSGE I propose is

more general than those in Garćıa-Schmidt and Woodford (2016); Farhi and Werning (2017);

1Gaĺı (2015) provides the benchmark for small-scale DSGE, while Christiano, Eichenbaum, and Evans
(2005) and Smets and Wouters (2007) provie that for medium-scale DSGE.

2Limited attention relaxes the first assumption (Mankiw and Reis, 2002; Woodford, 2003; Angeletos and
La’O, 2013; Gabaix, 2014; Afrouzi, 2017), while least-squared learning relaxes the second (Marcet and Sargent,
1989; Evans and Honkapohja, 1998; Milani, 2007; Eusepi and Preston, 2011).

3For instance, the interest rate responses to inflation and output gaps is inertial, and level-0 is specified to
anchor their decisions to the last period.

430% percentage of the others are level-1 is different from for 30% probability that all others are level-1,
due to recursive structure of the model.
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Iovino and Sergeyev (2017).

Another issue is “Eductive Stability”. The recursive level-k equilibrium is well defined only

if it converges to the recursive competitive equilibrium when k → +∞. This property does

not hold in real business cycles (Evans, Guesnerie, and McGough, 2017), because households

respond too aggressively to interest rate expectations. As a result, the interest rate implied

by households’ decisions would exceed the initial range of interest rate expectations. In my

model, I introduce incomplete markets to make the planning horizons of households shorter so

that they would respond less aggressively. The extent of market incompleteness is disciplined

by the transition probability from non hand-to-mouth consumers to hand-to-mouth consumers

in Kaplan and Violante (2014).

The equilibrium conditions can no longer be formulated as intertemporal conditions between

current period and next period as in recursive competitive equilibrium. Yet, once solved, the

model still has a state space representation. Multiple steps ahead forecasts can be obtained

only by iterating on aggregate states using the perceived aggregate law of motion. This feature

resembles “Infinite-horizion Learning” as in Eusepi and Preston (2011). However, due to the

incomplete markets, the model can have a simple purely forward looking representation only

in a special case in which the steady state real interest rate is zero. All theoretical results in

this paper are obtained under this condition. In the appendix, a more general algorithm is

provided for the computation of the full model.

The specification of level-0 and timing is also worth mentioning. Level-0 households and firms

fully anchor their spending the pricing decisions to the last period. This is consistent with

the principle in level-k games that level-0 agents should be as “dumb” as possible. In order to

circumvent multiple equilibria generated by the simultaneity between decisions making and

expectation formation. I specify the timing such that agents do not update their expectations

until they finish making decisions at the end each period, even if they have previously observed

some new information before. This timing arrangement is neutral under rational expectations,

because no observations are informative to the agents if they have already anticipated them

using the correct aggregate law of motion. This setup implicitly assumes away other forms of

learning, and isolates the eductive learning.
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My second contribution is to unravel the essence of level-k DSGE. Level-k DSGE is not the

only model to allow for a wedge between the perceived aggregate law of motion and the actual

aggregate law of motion. Gabaix (2017) also explicitly specifies a pair of perceived and actual

objects. Level-k DSGE is sharper in the sense that it predicts in which dimension the wedge is

larger. The model implies that in one-step ahead forecasts, when k ∈ [1, 2], indirect channels

are missing and direct channels are weaker. In multiple-step ahead forecasts, this result will

still hold approximately if k is close to 1.

Let’s use simple notations to demonstrate these channels. Denote the real GDP as Y , nominal

interest rate as R , and inflation as Π. Then, R → Y and Y → Π are direct channels that are

at least partially understandable by agents with k > 1, while Y → Π→ Y and R → Y → Π

are indirect ones, and partially understandable only by agents with k > 2.

These results only exist in one-step ahead forecasts, because in multiple-step ahead forecasts,

the perceived law of motion starts to play a role. Take Y → Π→ Y for example. Households

do not understand the effect of inflation expectation of the others, but as their own inflation

expectations go up, they anticipate interest rate movement, and hence understand Y → Π→
Y through R → Y . Quantitatively, this channel is much weaker than the previous one.

Another interesting feature of level-k is that the forecasts of the forecasts of others are not

identical to the direct forecasts on the same objects. As the forecast horizon becomes longer,

this difference becomes larger. It implies that the infinite horizon assumption is not innocuous.

This feature is not unique in level-k. Expectations modeled as forecast rules anchored to the

past is likely to be incompatible to the common knowledge of individual rationality which can

be used to achieve the irrelevance of planning horizons. Angeletos and Lian (2018) and Farhi

and Werning (2017) have also mentioned the importance of planning horizons for firms and

households respectively, while my paper uncovers the essence of it more generally.

My third contribution is to provide sharp disciplines for level-k DSGE. Despite various empir-

ical works in level-k games to identify the parameter k (Camerer, Ho, and Chong, 2004), there

are no empirical counterparts in macroeconomics. There may be two reasons for this. First,

it seems that models in which households keep on learning from the past is more plausible for

business cycle related issues in normal times. Second, it not clear how to identify k .
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I argue that level-k is still relevant given historical data for learning, as expectations data

show that households’ forecast rules are systematically biased. There are two possible reasons

why learning does not make households more rational as players are in dynamic experiments.

First, the payoffs of decisions are much less clear along business cycles. Second, recalling and

analyzing historical data for business cycles is much more costly.

I show that k can be identified by exploiting the co-movements between macroeconomic data

and forecast data. Hence, the DSGE structure actually helps identify level-k by providing dy-

namics of multiple macroeconomic variables. The missing co-movements for indirect channels

identify k ∈ [1, 2], while the weakened direct channels help identify the exact value of k .

In the estimation, I adopt Bayesian approach, and use five time series including quarterly GDP

growth rate, quarterly inflation, quarterly federal fund rate, one-year ahead growth forecasts,

and one-ahead inflation forecasts. k is jointly estimated with other parameters, and also fits

the macroeconomics data. The prior of k is set to be very dispersed and cover the interval of

[1, +∞). Yet, the posterior has a tight 95% confidence interval [1.212, 1.467].

My forth contribution is to evaluate the performance of the model under different monetary

policies. The rational expectations approach was introduced into macroeconomic modeling to

overcome “The Lucas Critique”. However, agents’ endogenous responses to policies does not

have to be captured by rational expectations. Level-k DSGE provides an alternative way to

model expectations. It can be a useful tool if it performs well under different policy regimes.

Under inflation targeting Taylor Rule during the Great Moderation, the model can produce

impulse responses of output, inflation and interest rate to monetary shocks aligned with the

data. In particular, the model captures both output and inflation inertia without relying on

other frictions. A rational expectations model can have the identical impulse responses if it

has external habit, working capital loans, and very sticky marginal cost of production. Still,

such a model cannot get even close to the dynamics of forecasts. Level-k DSGE can produce

inertia responses because level-1 expectations are anchored, and the anchoring is strong if

the value of k is not large. Current inflation is determined by the discounted sum of output

forecasts, which is again anchored to the past.
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Under Taylor Rule in the pre-Volcker era with more active output targeting, the model can

generate output forecasts more aligned with its backcasts. This result comes from the property

of the model that inflation targeting stabilizes the economy only by stabilizing households’

expenditures, while output targeting goes though households’ expectations additionally.

In the Great Recession when interest rate is trapped at zero, the model can explain the missing

deflation, stagnant recovery expectations, and slow recovery in data. The drop of inflation

realizations and inflation expectations is small in long-lasting recessions because inflation in

level-k model does not explode under permanent output gaps, and inflation expectations

only captures part of the movement in inflation. The recovery expectations is weak because

long-lasting stimulus of low interest rate only has small accumulated effects when households

planning horizon is short. The recovery is weak because the expected recovery of output in

far future does not help the recovery of current output when planning horizon is short.

The effect of forward guidance is also unique in quantitative results. Unlike the theoretical

work of McKay, Nakamura, and Steinsson (2016); Angeletos and Lian (2018); Farhi and Wern-

ing (2017) which show how forward guidance is dampened, it is accumulative in empirically

relevant level-k models, and can ultimately have a sizable aggregate effect, if the monetary

authority has full commitment power in forward guidance.

The rest of the paper is organized as the following. Section 2 documents a set of facts from

Michigan Survey of Consumers that are hardly captured by other existing models but consis-

tent with level-k model. Section 3 develops the level-k DSGE model. Section 4 highlights the

special role of planning horizon. Section 5 connects the model to data with special emphasis

on the identification of parameter k using consumer forecasts. Section 6 evaluates the model

performance under different policy regimes. Section 7 concludes.
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2 The Missing Forecasts

This section demonstrates a unique set of stylized facts on the consumer forecasts of business

condition changes and inflation rate that can hardly be rationalized without a level-k model.

The data of interest is from the Michigan Survey of Consumers. I explore the disconnection

between forecasts and backcasts of business condition changes to falsify a few theories other

than level-k. I also explore forecast errors conditional on federal fund rate to provide supported

evidence for the level-k model.

2.1 Facts against Other Theories

Large systematic forecast errors in business condition changes during 1985-2007 can be found

in Figure 1. The one year backcasts comove almost perfectly with the ex post output growth

rates, indicating that households can observe the output growth rates at least in aggregate.

In contrast, the one year forecasts comove very little with either the backcasts or the ex post

output growth rates. The discrepancy is large and very persistent, rejecting full information

rational expectations.
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Figure 1: Forecast and Backcast Dynamics
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Figure 2 shows that information friction as in Angeletos and La’O (2013) can hardly capture

these forecast errors. According to the theory, agents understand the aggregate law of motion,

but are confused about the aggregate state. However, Figure 2 indicates that the within sample

predicted business condition changes from the autoregression of backcasts is much more precise

than the corresponding forecasts. This indicates that consumers are not using the aggregate

law of motion of backcasts to make forecasts.
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Figure 2: Within Sample Prediction

Figure 3 shows that imperfect knowledge as in Eusepi and Preston (2011) can hardly capture

these forecast errors either. According to the theory, agents do not understand the aggregate

law of motion, but can gradually learn it from historical data. In order to test this assumption,

I replace the within sample prediction in Figure 2 with out of sample prediction in Figure 3.

The slop of fitted backcasts is still close to the 45 degree line, while that of the fitted forecasts

is still nearly horizontal. This indicates that the aggregate historical data of backcasts is not

what consumers can easily learn from. It is also possible that consumers’ individual backcasts

are subject to large noise (measure errors), so that they greatly underestimate the predictive

power of historical backcast data. This possibility still implies that consumers learn very little

from historical macroeconomic data.

8



−60 −40 −20 0 20 40
−60

−50

−40

−30

−20

−10

0

10

20

30

40

out of sample predicted business condition change (linearly detrended)

fo
re

c
a

s
t 

/ 
b

a
c
k
c
a

s
t 

(l
in

e
a

rl
y
 d

e
tr

e
n

d
e

d
)

Index of 1 Year Business Condition Change

 

 

forecast

backcast

Figure 3: Out of Sample Prediction

2.2 Facts Supporting Level-k Model

The lack of variation in forecasts conditional on backcasts as in Figure 2 and 3 is not conflicting

with a level-k model. In the model, level-k agents only understand the comovements between

macroeconomic variables that result from no more than k-1 layers of feedback effects. When

k is no larger than 2, it will be difficult for consumers to understand how todays’ output level

feeds back into output growth in the future through any self-stabilizing mechanisms.

In addition to that, level-k model also predicts that inflation rate rise (fall) following interest

rate fall (rise) is more difficult to understand than business condition change index rise (fall)

following interest rate fall (rise). Figure 4 and 5 confirm these model properties. The slops of

one year ahead business condition change to federal fund rate in forecasts and backcasts are

very close, while the slops of one year ahead inflation rate to ex ante real interest rate (federal

fund rate subtracting inflation expectations) in forecasts and in reality have opposite signs.

VAR impulse responses functions are not used here because the main focus of these facts are

the biased perceived law of motion instead of the propagation of shocks.
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Figure 4: Interest Rate and 1 Year Ahead Business Condition Change
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3 Recursive Level-k Equilibrium

This section demonstrates how to put level-k friction into a basic New Keynesian DSGE model

as in Gaĺı (2015). The log-linearized form of this basic model is

ŷt =− ω(Et−1r̂t − Et−1π̂t+1 + ηdt ) + Et−1ŷt+1,

π̂t =
(1− θ)2

θ
(κy ŷt − κzηzt ) + Et−1π̂t+1,

r̂t =ρr r̂t−1 + (1− ρr )(φππ̂t + φy ŷt) + σrε
r
t ,

ηdt+1 =ρdη
d
t + σdε

d
t ,

ηzt+1 =ρzη
z
t + σzε

z
t .

The first equation represents the IS curve that connects the current output ŷt to the expected

nominal interest Et−1r̂t , expected next period inflation rate Et−1π̂t+1, expected next period

output Et−1ŷt+1, and demand wedge ηdt . The second equation represents the Phillips Curve

that connects the current inflation rate π̂t to the current output, next period inflation expec-

tation, and efficiency wedge ηzt . The third equation represents the Taylor Rule that describes

the law of motion for nominal interest rate r̂t . Both the demand wedge ηdt and the efficiency

wedge ηzt follow an AR(1) process. The timing of shocks satisfies

Et−1(εrt , ε
d
t , εzt ) = (0, 0, 0).

This timing assumption resembles Christiano, Eichenbaum, and Trabandt (2016) in which the

current period nominal interest rate is known only after all decisions have been made.

In order to introduce level-k into this model, we need to introduce recursive level-k equilibrium

as a solution concept to deal with endogenous state variables in expectation formation, assume

that expectations are updated only after decisions are made to avoid the feedback effects from

current decisions to expectations on future, and impose market incompleteness to guarantee

“eductive stability”. For quantitative purposes, the space of k is expanded from N to {0} ∩
[1, +∞), and the labor input margin in production is replaced by material input margin. With

all these modifications, the level-k DSGE model still collapses to the basic model as k → +∞.
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3.1 Households

There are a measure one of infinitely-lived households with a constant discount factor β, and

an aggregate time-varying demand wedge exp(ηd) multiplied to it.

Timing. Within each period, events happen in the following order:

(1) Households inherit observations and expectations from the end of last period.

(2) Households observe the current gross inflation rate Π. The real net wealth a is determined

by the last period real bond position b−, the last period nominal gross interest rate R−, and

the current gross inflation rate Π through a = b−R−/Π.

(3) Households are hit by idiosyncratic preference shocks ζ ∈ {1, ζ}, with ζ ≥ 1 and transition

probability Pr(ζ|ζ−) = λζ|ζ− . This yields an unconditional probability Pr(ζ) = λζ .

(4) Households observe the real wage rate W and receive a lump sum transfer of real dividend

D. They consume c and supply labor ` ≤ 1 to get utility ζu(c). The rest of budget is saved

in real bond b = −c + W + D + a, with borrowing constraint b ≥ 0 only for ζ = ζ.

(5) Households observe the aggregate output Y as well as all aggregate shocks ε = (εr , εd , εz)

that drives the current gross nominal interest rate R , and the next period wedges (ηd ′, ηz ′).

(6) Expectations are updated via level-k reasoning and reported to surveys5.

States and Equilibrium Objects. Denote the vector of aggregate states as S . Individual

states include the real net wealth a and idiosyncratic preference shocks ζ. Level-k households

take as given the following equilibrium objects:

(1) perceived and actual real wage rate {W e,(k)(S), W (k)(S)},
(2) perceived and actual real dividend {De,(k)(S), D(k)(S)},
(3) perceived gross nominal interest rate Re,(k)(S , εr ),

(4) perceived gross inflation rate Πe,(k)(S),

(5) perceived aggregate law of motion He,(k)(S , ε).

5I assume that households do not update expectations until the end of each period using the newly arrived
information of {Π,W ,D} to aviod a twoway feedback between current equilibrium outcomes and expectations
on future. As a result, expectations are inferred exclusively from the aggregate states. Under full information
rational expectations, expectations inferred from the aggregate states are consistent with equlibrium outcomes,
hence {Π,W ,D} provide no additional information. In my specification of level-k reasoning, there are ex post
forecast errors in {Π,W ,D} but households do not learn from them.
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Households’ Problems. Households have perceptions on their equilibrium policy and value

functions {ce,(k), be,(k), V h,e,(k)} on (ζ, a, S) for the future. These functions solve

V h,e,(k)(ζ, a, S) = max
{c,b}

{
ζu(c) + β exp(ηd) · E[V h,e,(k)(ζ ′, a′, S ′)|(ζ, a, S)]

}
s.t. b =− c + W e,(k)(S) + De,(k)(S) + a,

b >0 when ζ = ζ,

a′ =b · Re,(k)(S , εr )/Πe,(k)(S ′),

S ′ =He,(k)(S , ε).

In the current period, households observe the actual real wage and dividend {W (k)(S), D(k)(S)},
and have perceived continuation value function V h,e,(k). The actual equilibrium policy and

value functions {c (k), b(k), V h,(k)} on (ζ, a, S) solve

V h,(k)(ζ, a, S) = max
{c,b}

{
ζu(c) + β exp(ηd) · E[V h,e,(k)(ζ ′, a′, S ′)|(ζ, a, S)]

}
s.t. b =− c + W (k)(S) + D(k)(S) + a,

b >0 when ζ = ζ,

a′ =b · Re,(k)(S , εr )/Πe,(k)(S ′),

S ′ =He,(k)(S , ε).

Labor supply does not show up in this optimization problem because it does not induce any

disutility and will always have conner solution ` = 1.

Aggregation. With the assumption that bond b is in zero net supply, and b ≥ 0 binds only

when ζ = ζ, an initially degenerate wealth distribution will always induce equilibrium with

degenerate wealth distribution. Start with a degenerate wealth distribution with a = 0 for all

households. Those with ζ = ζ would like to consume more, but are borrowing constrained.

For others with ζ = 1, the equilibrium wage and dividend6 will clear the goods market such

that they would like to choose b = 0. This can be formalized in the following.

Assumption 1. u(·) is twice continuously differentiable, increasing and strictly concave.

6Interest rate will not help clear any market because by the timing specification, it is not known ex ante.
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Assumption 2. B (k)(S) = λ1b(k)(1, 0, S) + (1− λ1)b(k)(ζ, 0, S) = 0.

Proposition 1. Starting from a degenerate wealth distribution in which a = 0 for all house-

holds, the aggregate equilibrium objects {B (k), C (k)} satisfy

B (k)(S) =b(k)(1, 0, S) = b(k)(ζ, 0, S) = 0,

C (k)(S) =c (k)(1, 0, S) = c (k)(ζ, 0, S) = W (k)(S) + D(k)(S).

3.2 Firms

Production Technology. There are a measure one of infinitely-lived firms. Firm j ∈ [0, 1]

uses material inputs mj and labor nj to produce variety

xj = exp(ηz)mα
j n1−α

j ,

where exp(ηz) denotes the efficiency wedge. X is the gross final goods through Dixit-Stiglitz

aggregator, and we can also have the variety demand and price aggregator in the following.

X =

(∫ 1

0

x
ε−1
ε

j dj

) ε
ε−1

, xj =
(pj

P

)−ε
X , P =

(∫ 1

0

p1−ε
j dj

) 1
1−ε

.

With M =
∫ 1

0
mjdj , the net aggregate supply is

Y = X −M .

Timing. Within each period, events happen in the following order:

(1) A random fraction θ of the firms are drawn to keep their previous prices unchanged.

(2) Each other Firm j sets price pj before observing {Π, W , xj}.
(3) Each Firm j ∈ [0, 1] produces with cost minimization after observing {W , xj}.
(4) Real wage W and dividend D are paid to households evenly.

(5) Firms observe aggregate output Y and all aggregate shocks ε = (εr , εd , εz).

(6) Expectations are updated via level-k reasoning and reported to surveys.
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Cost Minimization. Given real wage W , the cost minimization problem of Firm j yields

a material input mj proportional to labor input nj

mj =
α

1− α
Wnj .

Given N =
∫ 1

0
njdj = 1 and M =

∫ 1

0
mjdj , we have

W =
1− α
α

M =
1− α
α

∫ 1

0

(
xj

exp(ηz)

) 1
α

dj .

The real cost of producing one unit of xj is

Z =
W 1−α

αα(1− α)1−α exp(ηz)
≡ W 1−α

αz exp(ηz)
.

The profit of firm j becomes

Dj =
(pj

P
− Z

)(pj

P

)−ε
X .

States and Equilibrium Objects. The firms that reset prices choose pa = p/P− as the

new price over the previous aggregate price. Other firms have individual state pn
− = p−/P−.

The Dixit-Stiglitz aggregator and cost minimization problem in production are both static,

and hence do not induce any inconsistency between equilibrium objects and perceived objects.

In the equilibrium, we have individual objects {x (k), m(k), n(k)} for firms as functions of (pn
−, S).

The aggregate counterpart is {X (k), M (k), N (k)}.

In the price setting stage, level-k firms take as given the following equilibrium objects:

(1) perceived gross inflation rate Πe,(k)(S),

(2) perceived real wage rate W e,(k)(S),

(3) perceived aggregate output Y e,(k)(S),

(4) perceived nominal gross interest rate Re,(k)(S , εr ),

(5) perceived aggregate law of motion He,(k)(S , ε).
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Firms’ Problems. Functions {pa,(k), V a,e,(k), V n,e,(k)(pn
−, ·)} on S solve

V a,e,(k)(S) = max
pa

(
pa

Πe,(k)(S)
− W e,(k)(S)1−α

αz exp(ηz)

)
︸ ︷︷ ︸

relative price − marginal cost

(
pa

Πe,(k)(S)

)−ε
X e,(k)(S)︸ ︷︷ ︸

variety demand

+ E
[

Πe,(k)(S ′)

Re,(k)(S , εr )

(
θV n,e,(k)

(
pa

Πe,(k)(S)
, S ′
)

+ (1− θ)V a,e,(k)(S ′)

)∣∣∣∣ S

]
,

V n,e,(k)(pn
−, S) =

(
pn
−

Πe,(k)(S)
− W e,(k)(S)1−α

αz exp(ηz)

)(
pn
−

Πe,(k)(S)

)−ε
X e,(k)(S)

+ E
[

Πe,(k)(S ′)

Re,(k)(S , εr )

(
θV n,e,(k)

(
pn
−

Πe,(k)(S)
, S ′
)

+ (1− θ)V a,e,(k)(S ′)

)∣∣∣∣ (pn
−, S)

]
.

s.t. S ′ =He,(k)(S , ε).

Profits are discounted using the real interest rate instead of the stochastic discount factor of

households. It does not make much difference up to first order approximation.

Aggregation. The aggregate inflation and dividend are determined by

Π(k)(S) =
(
θ + (1− θ)pa,(k)(S)1−ε) 1

1−ε ,

D(k)(S) =Y (k)(S)− W (k)(S)Y (k)(S)

exp(ηz)
.

3.3 Monetary Policy and Market Clearning

Monetary Policy. Denote steady state nominal gross interest rate, gross inflation rate and

output as {RSS , ΠSS , YSS}. Assume these are common knowledge to households.

In normal times, the monetary authority follows a conventional Taylor Rule

R (k)(S , εr )

RSS
=

(
R−
RSS

)ρr (Π(k)(S)

ΠSS

)(1−ρr )φπ (
Y (k)(S)

YSS

)(1−ρr )φy

exp(σrε
r ),
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where ρr denotes the level of interest rate smooth, (φπ,φy ) denotes the response coefficients of

nominal interest rate to inflation and output, εr denotes the i.i.d. federal fund rate shock, and

σr denotes its standard deviation. If not specified, monetary policy follows Taylor Rule. When

discussing liquidity trap related issues, monetary policy rule must satisfy R (k)(S , εr ) ≥ 0.

The perceived monetary policy rule is

Re,(k)(S , εr )

RSS
=

(
R−
RSS

)ρr (Πe,(k)(S)

ΠSS

)(1−ρr )φπ (
Y e,(k)(S)

YSS

)(1−ρr )φy

exp(σrε
r ).

Market Clearing. In each period when agents are making decisions, demand must be equal

to supply in goods market, labor market and bond market.

C (k)(S) =Y (k)(S),

N (k)(S) =1,

B (k)(S) =0.

3.4 Recursive Level-k Equilibrium

This subsection establishes a Recursive Level-k Equilibrium. Both households and firms are

level-k. Perceiving others as one level below is equivalent to using the actual equilibrium ob-

jects of this level as perceived equilibrium objects. Therefore, the recursive level-k equilibrium

can be established by iterating on the equilibrium objects. The Recursive Level-k Equilibrium

nests the definition of level-k equilibrium in Farhi and Werning (2017) as a special case, and

allows for a state space representation of the model.

Level-0 Initialization. Level-0 needs to be specify to initialize the iteration on equilibrium

objects. It is natural to assume that level-0 agents’ expenditure and level-0 firms’ price choice

are fully anchored to the last period7.
7Fehr and Tyran (2008) and Gill and Prowse (2016) have provided experimental evidence showing that in

a dynamic setting, players’ decisions are indeed anchored to the past.
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Assumption 3. The level-1 expectations are given by the following statements.

(1) Level-0 households and firms do not change decisions.

(Y (0)(S), Π(0)(S)) =( Y−, 1
behavioral type

).

(2) {W (0), D(0), M (0), X (0)} satisfies

W (0)(S) =
1− α
α

M (0)(S),

D(0)(S) =Y (0)(S)−W (0)(S),

M (0)(S) =

(
X (0)(S)

exp(ηz)

) 1
α
∫ 1

0

(pn
j ,−)−

ε
αdj ,

X (0)(S) =Y (0)(S) + M (0)(S).

(3) Given {Y (0), Π(0)}, R (0) satisfies Taylor Rule.

(4) H (0) is consistent with equilibrium objects.

Level-k Updating. For ∀j ≥ 1 and j ∈ N+, expectations are updated according to

(Y e,(j+1), Πe,(j+1), W e,(j+1), De,(j+1), Re,(j+1), He,(j+1)) = (Y (j), Π(j), W (j), D(j), R (j), H (j)).

For ∀k ≥ 1, and j ≤ k ≤ j + 1, expectations are defined8 as

(Y e,(k), · · · ) = (j + 1− k)(Y e,(j), · · · ) + (k − j)(Y e,(j+1), · · · ).

The solution to the temporary equilibrium9 with given expectations yields the mapping

T : (Y e,(k), · · · ) −→ (Y (k), · · · ).

This specification of level-k updating expands the space of k from N to {0} ∩ [1, +∞) for

empirical purposes.

8It extends integer k in most level-k models in a way different from Garćıa-Schmidt and Woodford (2016),
but has more transparent implications in more complex models and when k ∈ [1, 2].

9The equilibrium for each level-k is a temporary equilibrium (Grandmont, 1977).
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Aggregate Shocks and States. Aggregate shocks ε = (εr , εd , εz) and wedge (ηd , ηz) satisfy

εr ∼N (0, 1),

ηd ′ =ρdη
d + σdε

d , εd ∼ N (0, 1),

ηz ′ =ρzη
z + σzε

z , εz ∼ N (0, 1).

In the Taylor Rule monetary regimes, the aggregate state is S = {Y−, R−,
∫ 1

0
(pn

j ,−)−
ε
αdj , ηd , ηz}10,

while in other regimes, it may also include time index.

Recursive Level-k Equilibrium.

Definition 1. The Recursive Level-k Equilibrium consists of a set of

(1) {c (k), b(k), V h,(k)} and {ce,(k), be,(k), V h,e,(k)} on (ζ, a, S) for households,

(2) {x (k), m(k), n(k), V n,e,(k)} on (pn
−, S), and {pa,(k), V a,e,(k)} on S for firms,

(3) {C (k), B (k), X (k), M (k), N (k), Y (k), Π(k), W (k), D(k), R (k), H (k)(·, ε)} and

{X e,(k), Y e,(k), Πe,(k), W e,(k), De,(k), Re,(k), He,(k)(·, ε)} on S , such that

1. individual policy and value functions solve the corresponding problems,

2. individual policy functions are consistent with the law of motion of individual and aggregate

states, as well as the aggregate objects,

3. monetary policy follows Taylor Rule,

4. goods, labor and bond markets clear,

5. perceived aggregate objects are determined by level-k updating.

Definition 2. Replacing the level-k updating with consistency between the actual and perceived

objects yields the Recursive Competitive Equilibrium.

By definition, when k → +∞, if the Recursive Level-k Equilibrium converges, it must con-

verge to the Recursive Competitive Equilibrium. The convergence enables us to nest rational

expectations as a special case in estimation. This can be viewed as a way to compare level-k

with rational expectations in empirical performance.

10The distribution of variety prices has real aggregate effects.
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3.5 Equilibrium Representation

In models with rational expectations, the equilibrium can usually be represented by a set of

non-linear difference equations. However, it is no longer true in level-k DSGE. Still, the model

has a state space representation in general, and an infinite horizon representation under perfect

foresight or certainty equivalence, but the law of iterated expectations no longer applies.

State Space Representation. Definition 1 naturally allows for a transition equation

St+1 = H (k)(St , εt),

and a set of observation equations

ln(Yt+1) = ln(Y (k)(St+1)),

ln(Πt+1) = ln(Π(k)(St+1)),

ln(Rt) = ln(R (k)(St+1)),

ln(Y e
t+4|t) = ln(Y e,(k)(He,(k))3(St+1)) + σyε

y
t ,

ln(Πe
t+4|t) = ln(Πe,(k)(He,(k))3(St+1)) + σpε

p
t .

Here, the multiple step ahead forecasts are calculated assuming all shocks are absent. {εyt , εpt }
denote the measurement errors of forecasts.

Infinite Horizon Representation. When all aggregate shocks are turned off, the s period

ahead forecast of the aggregate states becomes11

S
e,(k)
t+s|t−1 = (He,(k))s(St).

The long horizon expectations are determined by

Y
e,(k)
t+s|t−1 = Y (k)(S

e,(k)
t+s|t−1).

11Eusepi and Preston (2011) also iterate foreward on the perceived aggregate law of motion to obtain long
horizon expectations.
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The whole sequence of forecasts at all horizons, although biased, pin down the optimal deci-

sions of households and firms, and hence the equilibrium. Similar results can be obtained if

shocks are not turned off but the solution is certainty equivalent or linear.

Iterated Expectations. When there is no aggregate uncertainty, agents would still revise

their forecasts after they have new observations that are inconsistent with what they expected

ex ante. When they try to forecast the forecasts of the others, the law of motion that is used

will be downgraded by one level. This will not be equivalent to the direct forecasts, and the

deviation will be amplified by the time horizon.

The accumulation of biases in expectations can be illustrated in the following example.

Example 1. Consider k ∈ N ∩ [2, +∞) and ε = 0, the long horizon forecast of the aggregate

state can be obtained by iterating on the aggregate state using the aggregate law of motion at

one level below, i.e.

S
e,(k)
t+1+s|t−1 = (H (k−1))s+1(St).

while the forecast of the forecast of others is

S
e,(k)
(t+1+s|t)|t−1 = (H (k−2))sH (k−1)(St),

Therefore, in each iteration of higher order beliefs, small deviations in short horizon forecasts

can accumulate into large deviations in long horizons.

Accumulative Forecast Errors. The accumulative forecast errors along forecast horizons

are not unique in level-k DSGE. In Eusepi and Preston (2011), the accumulation of forecast

errors allows the model to have quantitatively sizable effects from learning, but the biases in

short horizon forecast rules are small due to learning. In Angeletos and Lian (2018), forecasts

errors are also accumulative but do not come from biased forecast rules.
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4 Planning Horizon Non-Neutrality

This section explores the crucial role of “planning horizon” in level-k DSGE. First, the model

can be viewed as a pair of dynamic beauty contests connecting the discounted sum of output

and inflation forecasts to their current values. Second, “planning horizon” affects the extent of

forward looking due to the violation of “Law of Iterated Expectations” across agents. Third,

short “planning horizon” is necessary for “Eductive Stability”.

4.1 Beauty Contests

A few natural assumptions can make the characterization of level-k DSGE more transparent.

Assumption 4. Constant intertemporal elasticity of substitution ω:

u(c) =
c1− 1

ω

1− 1
ω

.

This assumption allows us to linearize the decision rules of households, and expressed it as a

function of discounted present value of income and substitution effects. The absence of labor

supply in utility function removes the wealth effect on labor supply from ω, while Proposition

1 implies that ω does not affect precautionary saving.

Assumption 5. The steady state net real interest rate is zero, i.e. RSS = ΠSS .

This assumption simplifies the connection between the frequency of borrowing constraints and

the effective discount factor in households’ decision rules.

Assumption 6. λζ|1ζ is large enough, so that assuming be,(k)(ζ, a, S) = 0 is innocuous.

This assumption requires that the borrowing constraint always binds under ζ = ζ also in the

off-equilibrium belief. The wealth dynamics of each individual household is degenerate also in

expectations so that we do not need to keep track of it when solving households’ optimization

problem.

Lemma 1. After log-linearization, the aggregate state for decisions at period t becomes ŝt =

(ŷt−1, r̂t−1, ηdt , ηzt ). This information set is indexed by t − 1.
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Proposition 2. The recursive level-k equilibrium must satisfy

ŷ
(k)
t =(1− γ)

+∞∑
s=0

γs
(
ϕy ŷ

e,(k)
t+1+s|t−1 + ϕππ̂

e,(k)
t+1+s|t−1

)
− ω

1− γρr
r̂
e,(k)
t|t−1 −

ω

1− γρd
ηdt ,

π̂
(k)
t =(1− θ)

+∞∑
s=0

θs
(

(1− θ)κy ŷ
e,(k)
t+s|t−1 + π̂

e,(k)
t+s|t−1

)
− κz

1− θ
1− θρz

ηzt ,

where γ = 1−
√

λζ|1ζ

λζ|1ζ+1−λζ|1
,

(ϕy ,ϕπ) =
(

1− ωγ(1−ρr )
(1−γ)(1−γρr )

φy , ω
1−γ −

ωγ(1−ρr )
(1−γ)(1−γρr )

φπ

)
,

(κy ,κz) =
(

1−α
α
ε− (1− α)(ε− 1), 1−α

α
ε + 1

)
.

This representation of the model can be viewed as a dynamic beauty contest in which the cur-

rent equilibrium variable is a vector of output and inflation gaps depending on the discounted

sequence of its future expected values.

The determinant of the parameter γ indicates that when borrowing constraints are more likely

to bind, households have shorter planning horizons. Farhi and Werning (2017) uses positive

mortality rate to capture this effect in their theoretical framework. In their model, households

react less to long horizon events because higher return rate makes the present value of future

incomes smaller. This assumption is no longer satisfactory in quantitative work because an

unrealistically high mortality rate is needed, which has no clear interpretation. In my model,

a 1% quarterly binding rate is sufficient to generate 10% quarterly discount rate on responses

to future events, due to the incentive of the households to keep a certain level of precautionary

saving, while the present value effect is much less important.

The price rigidity parameter θ plays two roles. The first one is similar to γ, which determines

firms’ planning horizon. The second one is the slop of Phillips Curve.

From this representation, it is obvious that higher expectations on future output and inflation

always raise the current inflation rate, but not necessarily the current output. The reason is

that the interest rate response to higher output level and inflation rate would possibly reverse

the incentive of spending, and hence result in even lower current output level.
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Example 2. when γ → 0,

ŷ
(k)
t = ŷ

e,(k)
t+1|t−1 − ω(r̂

e,(k)
t|t−1 − π̂

e,(k)
t+1|t−1 + ηdt ).

This example shows that when γ → 0, the model with arbitrary subjective expectations has

the identical households block as the approach which first derives equilibrium conditions under

rational expectations, and then replace rational expectations with subjective expectations as

in Milani (2007).

Example 3. If the model converges when k → +∞, then when k → +∞,

ŷ
(k)
t =ŷ

e,(k)
t+1|t−1 − ω(r̂

e,(k)
t|t−1 − π̂

e,(k)
t+1|t−1 + ηdt ),

π̂
(k)
t =π̂

e,(k)
t+1|t−1 +

(1− θ)2

θ
(κy ŷ

e,(k)
t|t−1 − κzη

z
t ).

Since expectations are unbiased when k → +∞, this indicates that level-k DSGE nests the

rational expectations DSGE as a special case.

4.2 Planning Horizon

The following corollary can be used to demonstrate what makes planning horizon relevant in

level-k DSGE.

Corollary 1. The level-k IS curve can be reformulated in the following

ŷ
(k)
t = ŷ

e,(k)
t+1|t−1 − ω(r̂

e,(k)
t|t−1 − π̂

e,(k)
t+1|t−1 + ηdt ) + (1− γ)

+∞∑
s=1

γs(ŷ
e,(k)
t+1+s|t−1 − ŷ

e,(k)
(t+1+s|t)|t−1)

− ω
+∞∑
s=1

γs [(r̂
e,(k)
t+s|t−1 − r̂

e,(k)
(t+s|t)|t−1) − (π̂

e,(k)
t+1+s|t−1 − π̂

e,(k)
(t+1+s|t)|t−1)].

When the Law of Iterated Expectations holds across agents, this equation reduces to

ŷ
(k)
t = ŷ

e,(k)
t+1|t−1 − ω(r̂

e,(k)
t|t−1 − π̂

e,(k)
t+1|t−1 + ηdt ).
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According to Corollary 1, planning horizon matters because the “Law of Iterated Expectation”

no longer holds across agents. For example, a level-2 agent form expectations as if others are

level-1, while they forecast the forecasts of others as if they arise from level-0.

This issue not only exists in level-k models. The derivation of Corollary 1 implicitly assumes

that agents understand “individual rationality”. If we relax the level-k assumptions expecta-

tions but instead impose “Law of Iterated Expectation” on Corollary 1, then the admissible set

of subjective expectations will be very restricted. See the following example for illustration.

Example 4. Consider an example in which

(1) level-k is relaxed,

(2) 1− θ = εr = ηd = 0, φy ≥ 0, and

(3) the perceived Taylor Rule is r̂ et+s|t−1 = φy ŷ e
t+s|t−1, then

ŷ e
t+1|t−1 = (1− γ)

+∞∑
s=0

γs
(

ŷ e
t+2+s|t−1 −

ωφy

1− γ
ŷ e
t+1+s|t−1

)
.

Now, consider a perceived law of motion ŷ e
t|t−1 = ρey ŷ e

t−1. Assume that the “Law of Iterated

Expectation” also holds across time, which is a natural assumption when individual rationality

is not violated, we can iterate on the perceived law of motion for output to obtain long horizon

expectations. As a result, we must have either ρey = 0 or ρey = 1 + ωφy ≥ 1. In another word,

anchored expectations are not admissible in this example.

There are two cases in which planning horizon does not play a role. The first case is k → +∞,

which corresponds to rational expectations as is standard in most DSGE models. In this case,

the “Law of Iterated Expectations” holds across both time and agents, but expectations will

no long be anchored by historical data. The second case is γ → 0, which corresponds to the

“Euler Equation Learning” approach as in Milani (2007) and Milani (2011). In this case, long

run expectations are assumed not to play a role. As in Example 4, anchored expectations are

not likely to be compatible with the common knowledge of individual rationality. In summary,

planning horizon is likely to play a key role in determining equilibrium output, if we would

like to have expectations anchored to the past. This issue exists even if the anchoring does

not arise from non-rational expectations (Angeletos and Lian, 2018).
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The following proposition summarizes the real effects of planning horizon γ.

Proposition 3. When ηd = ηz = 0 and k ∈ [1, 2], we have

ŷ
(k)
t = − ω

1− γρr
r̂
e,(k)
t|t−1 + (k − 1)(1− γ)(1− θ)κyϕπŷ

e,(k)
t|t−1 + δ(1− γ)

+∞∑
s=0

γs ŷ
e,(k)
t+1+s|t−1,

where δ = 1− ωγ
1−γ

[
(k − 1)(1− θ)κy

(
1−ρr

1−γρr γφπ − 1
)

+ 1−ρr
1−γρr φy

]
.

This proposition indicates that (1− γ)
∑+∞

s=0 γ
s ŷ

e,(k)
t+1+s|t−1 is crucial in determining the current

equilibrium output, and δ captures the size of this effect. Here, γ plays two roles. First, smaller

γ implies that households care more about the near future than the far future. Second, smaller

γ leads to larger δ and hence makes households more responsive to expectations. Taking stock,

when level-k output expectations anchors the past, smaller γ leads to stronger anchoring.

In addition to γ, {k , θ,φπ,φy} all affect δ. {k , θ} affect δ in the same way, as lower level rea-

soning and price flexibility both dampen the self-stabilizing channel in expectations through

making inflation expectations less responsive. {φπ,φy} both dampens the effects of expecta-

tions, but the relative role of φπ is affected by k−1 because it has to operate through inflation

expectations, and affects the equilibrium output only indirectly.

4.3 Eductive Stability

The convergence to rational expectations when k → +∞ is difficult to characterize in the full

model. Still, some transparent results can be obtained when ρr = φπ = 0. The goal is to show

why γ plays a crucial role in “Eductive Stability”. The role of γ in the full model is similar.

Lemma 2. When ρr = φπ = ηd = ηz = 0 and k ∈ N++, the law of motion for output satisfies

ŷ
(k)
t = ρ

(k)
y ŷt−1, and ρ

(k)
y satisfies

ρ
(k)
y

ρ
(k−1)
y

= −ωφy +

(
1− ωγ

1− γ
φy

)
(1− γ)ρ

(k−1)
y

1− γρ(k−1)
y

.
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Definition 3. Under the same environment, “Eductive Stability” is defined as the following:

∃M ∈ [0, 1), such that for ∀ρ(k−1)
y with |ρ(k−1)

y | ≤ 1, | ρ
(k)
y

ρ
(k−1)
y

| ≤ M.

The requirement that the convergence speed must be uniformly fast than some lower bound

does not lose any generality because the mapping from ρ
(k−1)
y to ρ

(k)
y itself is uniform.

If we allow ρ
(0)
y to be specified in an arbitrary way, then “Eductive Stability” will become a

sufficient and necessary condition to guarantee that the convergence to rational expectations

when κ→ +∞ is monotonic in absolute values. Due to the monotonicity of
ρ

(k)
y

ρ
(k−1)
y

in ρ
(k−1)
y for

|ρ(k−1)
y | ≤ 1, it is easy to prove the following proposition.

Proposition 4. When ρr = φπ = ηd = ηz = 0 and k ∈ [1, +∞) ∩ N, the sufficient and

necesary condition for “Eductive Stability” is γ ∈ ( 1
2
ωφy , 1− 1

2
ωφy ).

In standard parameterization, the γ > 1
2
ωφy is always satisfied, while γ < 1− 1

2
ωφy is usually

not. For instance, when (ω,φy ) = (0.5, 0.2), “Eductive Stability” requires γ ∈ (0.05, 0.95).

Complete market models are observationally equivalent to γ = β > 0.95, while incomplete

market models can have γ < 0.95. This result resembles the findings in Evans et al. (2017)

that the long planning horizon destroys the “Eductive Stability”.

The proof of “Eductive Stability” is complex and less illuminating in the full model. Yet, the

main insight is similar. Too strong self-stabilizing feedback from Taylor Rule and consumption

response would make the equilibrium output responding negatively to output expectations,

which is strongly contradictory to common sense.

There is a crucial parameter δ we could take a closer look. This parameter describes how the

equilibrium output reacts to its expectations along all horizons. “Eductive Stability” requires

this parameter to be large enough. From the expression of δ as in Proposition 3, we can see

that (1) γ plays a similar role as in Lemma 2; (2) smaller k and 1 − θ both increase the

likelihood of “Eductive Stability” directly, and in addition makes inflation targeting less likely

to destroy “Eductive Stability” indirectly; (3) ρr does not play a large role. Therefore, we can

conclude that level-k model is more likely to be a useful tool for business cycle questions in

the presence of incomplete markets and nominal rigidities.
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5 Asymmetric Reasoning

The major feature of level-DSGE is the “asymmetric reasoning” in forecast rules. Households

can understand the comovements between macroeconomic variables that have direct connec-

tions, but not those that must be inferred from feedback effects. This section formalizes this

feature of the model, takes the model to take, and evaluates its quantitative impact.

5.1 Testable Forecast Rules

One Step Ahead Forecasts. When k ∈ (1, 2], the macroeconomic comovements that arise

from feedback effects are not understandable by agents, so that part of the state variables are

missing in their forecast rules.

Proposition 5. Level-k expectations for k ∈ [1, 2] are given by

ŷ
e,(k)
t|t−1 − ŷt−1 =(k − 1)ω

(
− 1− ρr

1− γρr
φy

1− γ
ŷt−1 −

ρr
1− γρr

r̂t−1 −
1

1− γρd
ηdt

)
,

π̂
e,(k)
t|t−1 =(k − 1)(1− θ)

(
κy ŷt−1 −

κz
1− θρz

ηzt

)
.

This proposition has the following implications. First, the monetary policy rule is only partly

understood, in the sense that only the interest rate response to output fluctuations is incor-

porated into the one-quarter ahead forecast rules. Second, if interest rate does not respond to

output, then the forecast rules exhibits “asymmetric reasoning”, in the sense that interest rate

is only used to forecast output growth, while output level is only used to forecast inflation in

the next quarter. Third, agents’ reasoning is asymmetric in a way that only the direct effects

shows up in forecast rules, while the feedback effects are absent. Forth, the coefficients on all

state variables in forecast rules are proportional to k − 1, which looks as if k − 1 represents

households’ awareness of direct effects.

Mutiple Step Ahead Forecasts. The nice results in one quarter ahead forecasts do not

carry on directly to multiple step ahead forecasts.
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Corollary 2. When φy = ηd = ηz = 0 and k ∈ [1, 2], we have

∂ŷ
e,(k)
t+3|t−1

∂ŷt−1
− 1 =− ψφπ(1 + ρ2

r − ψφπ),

∂π̂
e,(k)
t+3|t−1

∂ r̂t−1
=− ψ(1 + ρr + ρ2

r − ψφπ)

1− ρr
,

where ψ = (k − 1)2(1− θ)κyω
ρr (1−ρr )

1−γρr ,

The missing channels in Proposition 5 are no longer missing here. Yet, their sizes are in the

same order of magnitude as the small ψ. Agents are aware of the self-stabilizing forces because

they have non-trivial inflation expectations, and understand that interest rate responds to it.

These two channels will be used to compute the perceived law of motion. However, both of

them are much weaker than reality due to the dampening effects of level-k when k is close to

1. In addition, growth and inflation expectations are formed without using the expectations

of the others, which also makes expectations less responsive than reality.

As a result, as long as k is close to 1, the “asymmetric reasoning” is still a distinct feature of

the one-year ahead forecast rules. Therefore, we can still use the data implied forecast rules

to test whether expectations are correctly specified in the level-k model.

5.2 Taking Model to Data

Calibrate Planning Horizon γ. Recall the equation that determines the value of γ

γ = 1−

√√√√ λζ|1ζ

λζ|1ζ + 1− λζ|1
.

Two parameters {λζ|1, ζ} need to be calibrated.

According to Kaplan, Violante, and Weidner (2014), the probability that a non-hand-to-mouth

consumer remains non-hand-to-mouth after one quarter is 0.967, and hence λζ|1 = 0.967. Set

ζ = 1.2 or 1.5 or 2.0 to get γ = 0.802 or 0.779 or 0.747. γ = 0.8 is taken as the benchmark.
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State Space Representations. The state space representation has a transition equation

ŝt+1 =


ŷt

r̂t

ηdt+1

ηzt+1

 = Γss,(k)


ŷt−1

r̂t−1

ηdt

ηzt

+


0

σrε
r
t

σdε
d
t

σzε
z
t

 ,

and a measurement equation
ŷt+1 − ŷt

p̂t+1 − p̂t

r̂t

ŷ e
t+4|t − ŷt

p̂e
t+4|t − p̂t

 =


Γys,(k) − Γy

Γπs,(k)

Γr

Γys,e,(k)(Γss,e,(k))3 − Γy

Γπs,e,(k)
∑3

τ=0(Γss,e,(k))τ

 ŝt+1 +


0

0

0

σyε
y
t

σpε
p
t

 ,

where Γss,(k) and Γss,e,(k) denote the actual and perceived law of motion for the recursive level-

k equilibrium, Γys,(k) and Γps,(k) denote the actual function of output and inflation, Γys,e,(k)

and Γps,e,(k) denote the perceived functions or the forecast rules of output and inflation, Γy

and Γr extract output and interest rate from the vector of aggregate states. {εrt , εdt , εzt , εyt , εpt }
are i.i.d. standard normally distributed, in which {εrt , εdt , εzt } stand for exogenous shocks

driving aggregate states, while {εyt , εpt } are measurement errors. {σr
t ,σd

t ,σz
t ,σy

t ,σp
t } denote the

standard deviation of all these shocks.

Time Series Observables. The macroeconomic data range from the first quarter of 1985

to the last quarter of 2007, covering the period of the Great Moderation. The quarterly real

GDP Yt is used to construct output growth rate, quarter GDP deflator Pt is used to construct

inflation, and annualized federal fund rate rt is used to construct nominal interest rate.

ŷt+1 − ŷt =detrend(ln Yt+1 − ln Yt),

p̂t+1 − p̂t =detrend(ln Pt+1 − ln Pt),

r̂t =detrend(rt)/4,

where detrend(·) represents for the linear detrending operator.
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The forecast data is taken from Michigan Survey of Consumers in the same time range. It

includes the backcast index of yearly business condition change bagot , forecast index of yearly

business condition change bexpt , and forecast of yearly inflation rate inflmedian12t . The one

year ahead output growth rate forecast is constructed assuming perfect recall and the one year

ahead inflation rate forecast is taken from the median value of the survey response directly.

ŷ e
t+4|t − ŷt =detrend

[∑
bagot(ln Yt − ln Yt−4)∑

bago2
t

· bexpt

]
,

p̂e
t+4|t − p̂t =detrend(inflmedian12t).

Baynesian Estimation. Set κy = 1 to capture the 50% intermediate input share as in

Bils, Klenow, and Malin (2018). The prior and posterior distributions of other parameters are

summarized in Table 1.

Table 1: Prior and Posterior Distribution of Parameters

Parameters Prior shape Prior Mean Prior S.D. Post. Mean 95% Band
k Uniform 1/k 1.334 [1.212,1.467]
ω Normal 1.000 0.500 0.075 [0.036,0.114]
θ Uniform 0.925 [0.896,0.945]
φπ Normal 1.500 0.500 1.636 [0.767,2.844]
φy Normal 0.200 0.100 0.102 [-0.001,0.214]
ρr Uniform 0.915 [0.869,0.957]
ρd Uniform 0.237 [0.076,0.440]
ρz Uniform 0.878 [0.844,0.914]

400σr InvGamma 0.500 4.000 0.435 [0.384,0.507]
100σd InvGamma 1.000 4.000 4.160 [2.178,8.996]

100κzσz InvGamma 5.000 4.000 5.562 [3.397,8.794]
100σy InvGamma 0.300 4.000 0.307 [0.262,0.358]
100σp InvGamma 0.500 4.000 0.373 [0.323,0.431]

The prior of k is chosen such that k = +∞ can be drawn with the same probability as k = 1

without data. For parameters {ω,φπ,φy} that can take the values in R, the prior distribution

is assumed to be normal. For parameters {θ, ρr , ρd , ρz} that can only take values in [0, 1], the

prior distribution is assumed to be uniform.
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k = 1.334 is close to the results in experimental games as in Camerer et al. (2004). Although ω

is much smaller than 1, it is consistent with macro level estimates as summarized by Havranek

(2015). θ is very close to 1 due to the absence of wage rigidity. φπ = 1.636 is quite standard. φy

is close to 0 because higher values will lead to very strong self-stabilizing force in expectations,

which is absent in the data. ρr = 0.915 is standard in the literature. ρd much smaller than

1 indicates that the model has strong internal propagation mechanism for aggregate demand.

ρz not close to 1 indicates that the model is unlikely to be misspecified in terms of stationarity.

σy and σp are both smaller than the standard deviations of growth and inflation forecasts,

which are very difficult to get if the expectations formation process is not properly specified.

5.3 Quantitative Forecast Wedges

Forecast Dynamics. Figure 6 and 7 compare forecasts in the model, with forecasts in the

data and reality in the data for both output growth and inflation.

The volatility of output growth forecasts in both model and data is much lower than reality.

The forecast errors are large, persistent and countercyclical, which indicates that households

expectations’ are driven by endogenous waves of optimism and pessimism. The model implied

forecasts generally fits the data counterpart well. The rise of growth forecasts during the early

2000s and the fall of them during the late 2000s in the data that seems difficult to capture by

the model are aligned with news shocks as in Barsky and Sims (2012).

Inflation forecasts are also much less volatile than the reality. The model generally captures

the overpredict of inflation during the IT boom in the late 1990s, and the underpredict of

inflation during the housing booms in the middle of 2000s. Yet, it does not fully capture the

rise of inflation expectations during the late 1980s. This discrepancy is very difficult to clean

up because k is exogenous in the model. Once I raise k to capture the inflation expectations

during the late 1980s, the fit of inflation expectations during other periods will be much worse.

It would be ideal if we have the data of interest rate expectations. Unfortunately, the data pro-

vided by Michigan Survey of Consumers is only qualitative, and there is no easy to transform

it into quantitative measures.
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Figure 6: Forecast Dynamics of Output Growth
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Figure 7: Forecast Dynamics of Inflation Rate
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Wedges in Forecast Rules. A distinct feature of level-k DSGE model is the wedge between

forecasts and reality. Table 2 summarizes the wedges by comparing the corresponding law of

motion for output growth and inflation. The indirect channels that are hard to understand

by households are marked by shaded areas.

Table 2: Wedges in Forecast Rules

ŷ e
t+4|t − ŷt Et ŷt+4 − ŷt

Model Data Model Data

ŷt −0.022 0.023
[−0.009,0.055]

−0.249 −0.126
[−0.248,−0.005]

r̂t −0.298 −0.531
[−0.683,−0.379]

−1.945 −1.352
[−1.930,−0.773]

ηdt+1 −0.040 −0.009
[−0.020,0.001]

−0.141 −0.136
[−0.176,−0.096]

ηzt+1 0.001 0.008
[−0.001,0.016]

0.016 0.030
[−0.002,0.062]

R2 0.402 0.526

p̂e
t+4|t − p̂t Et p̂t+4 − p̂t

Model Data Model Data
ŷt 0.100 0.068

[0.028,0.107]
0.320 0.279

[0.233,0.326]

r̂t −0.012 0.457
[0.271,0.643]

−0.463 −0.316
[−0.537,−0.094]

ηdt+1 −0.003 0.009
[−0.004,0.022]

−0.043 −0.013
[−0.028,0.003]

ηzt+1 −0.034 −0.040
[−0.050,−0.030]

−0.110 −0.077
[−0.089,−0.065]

R2 0.552 0.719

In Table 2, state variables are used as the regressors in the forecast rule regression to check

model fit. {η̂d , η̂z} are model implied structural shocks. ŷ e
t+4|t− ŷt and p̂e

t+4|t− p̂t are one year

ahead growth and inflation forecasts. Et ŷt+4 − ŷt and Et p̂t+4 − p̂t are the unbiased one year

ahead growth and inflation expectations. If forecast rules in the model are correctly specified,

then the model implied measurement errors should be i.i.d., hence the estimated forecast rules

should be identical for model and data. If the equilibrium problem in the model are correctly

specified, then structural shocks should be i.i.d., and the estimated unbiased expectations

rules should also be identical for model and data. The regression results indicate that the

misspecification is only mild.
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The regressions in Table 2 indicate that the model generally captures the wedges between the

forecast rules and the unbiased expectations rules. The indirect connection between output

level and output growth forecasts, and that between interest rate and inflation rate forecasts

are missing in both model and data. The direct connection between interest rate and output

growth forecasts, and that between output level and inflation rate forecasts are there but much

weaker in both model and data.

Identification of Level-k. The main identification of level-k comes from the forecast rules.

Figure 8 plots the coefficient differences between the model implied forecast rules and the data

implied forecast rules, normalized by the standard errors of the later.
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Figure 8: Identification of Level-k

The two indirect channels, growth forecasts conditioning on output level and inflation forecast

conditioning on interesting rate, can identify k ∈ [1, 2], because they obtain best fit only in

this range; while the two direct channels, growth forecasts conditioning on interest rate and

inflation forecast conditioning on output level, help identify k given k ∈ [1, 2], because they

have additional best fit points outside [1, 2] but are more sensitive to k within [1, 2].
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6 Alternative Policies

This section evaluates the model performance under four alternative monetary policies. The

robustness of model performance can provide additional support for the usefulness of level-

k DSGE. The four polices includes Taylor Rule during the Great Moderation, Taylor Rule

during in Pre-Volcker era, Liquidity Trap in the Great Recession, and Forward Guidance.

6.1 Great Moderation

Impulse Reponses. Figure 9 plots the impulse response functions to -1 standard devia-

tion of federal fund rate shocks. The model generated responses are well aligned with those

produced by a structural VAR.
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Figure 9: Impulse Reponses to Monetary Shocks
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Inflation Inertia. According to the top-left panel, the response of output is hump-shaped.

One potential reason is the highly anchored forecasts of future output dynamics. Corollary 2

has provided the intuition of it.

More interesting is the inflation inertia from the right-bottom panel. Under rational expecta-

tions, it is not easy to have such results without inflation indexation or working capital loans.

The following proposition demonstrates how level-k DSGE produces inflation inertia.

Proposition 6. When k ∈ [1, 2] and ηzt = 0,

π̂
(k)
t = (1− θ)κy

{
(k − 1)(1− θ)ŷt−1 + [1 + θ(k − 1)](1− θ)

+∞∑
s=0

θs ŷ
e,(k)
t+s|t−1

}
.

This proposition shows that the current inflation is driven by output forecasts, and we have

known previously that the forecasts of output paths are highly anchored to the past.

Observational Equivalence. Under rational expectations, other frictions are needed to

produce the same impulse responses.

Proposition 7. The following model with full information rational expectations, external habit

and within period working capital loans

ŷt − ŷt−1 =− 1− h̃

h̃
ω̃(r̂t − π̂t+1) +

1− wyss(1− ω̃)

h̃
(ŷt+1 − ŷt),

π̂t =
(1− θ̃)2

θ̃

[
κ̃y

(
1

1− h̃
ŷt −

h̃

1− h̃
ŷt−1

)
+ r̂t

]
+ π̂t+1,

r̂t =ρr r̂t−1 + (1− ρr )(φππ̂t + φy ŷt),

where (h̃, ω̃, κ̃y , θ̃) = (0.863, 0.730, 0.068, 0.749) has the identical impulse response functions to

FFR shocks as the level-k DSGE. Here wyss = 2/3 denotes the steady state labor share.

Compared with this model, level-k DSGE has its own merit because it has the same number

of parameters but captures additionally the forecast dynamics. κ̃y = 0.068 also explains why

very sticky wage is needed in Christiano et al. (2005) to amplify the role of working capital.
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6.2 Pre-Volcker Era

Growth Forecasts Across Regimes. Extending the sample range from 1985q1-2007q4 to

1965q1-2007q4 for Figure 1 to get Figure 10, we see that the backcasts of business condition

changes are not improved, but the forecasts are much more aligned with both the backcasts

and the reality.
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Figure 10: Growth Forecasts Across Regimes

In the empirical literature of estimating monetary policy rules, there is one line of research led

by Orphanides (2004) arguing that in the pre-Volcker regime, monetary policy is too active

to poorly measured output gaps. Boivin (2006) conducts more careful analysis and confirms

the more active response to output gaps in the Pre-Volcker era.

Ideally, we should estimate the whole model in the pre-Volcker era to quantify the contribution

of alternative policy rules in explaining the forecasts during the pre-Volcker era. However, this

cannot be achieved because the current version of level-k DSGE does not handle stochastic

trend very well. A much less ambitious approach is to check whether the alternative forecast

rule under alternative policy rule is also aligned with data.
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Inflation vs GDP Targeting. The coefficients φπ and φy reflect the dual goals of inflation

targeting and GDP targeting in monetary policy rules. Despite the disagreement in empirical

results, it is generally believed that φπ is lower (Clarida, Gaĺı, and Gerlter, 2000) and φπ is

higher (Orphanides, 2004) in the pre-Volcker era. Boivin (2006) adopts more sophisticated

methods, and gets (φπ,φy ) = (1.10, 0.47) before 1979q3, and (φπ,φy ) = (1.50, 0.00) after that.

Table 3 summarizes the role of policy rules in affecting the mean reversion of output. The 4

columns correspond to the model based forecast rule, data based forecast regression, model

based unbiased expectation rule, data based auto-regression. The upper half of corresponds

to the Great Moderation period, while the lower half corresponds to the pre-Volcker era.

Table 3: Mean Reversion Across Policy Regimes

ŷ e
t+4|t − ŷt Et ŷt+4 − ŷt

(1.64, 0.10) 1985q1-2007q4 (1.64, 0.10) 1985q1-2007q4
ŷt −0.022 −0.008

[−0.050,0.034]
−0.250 −0.290

[−0.447,−0.133]

Obs. 88 88
R2 0.002 0.135

(1.10, 0.47) 1965q1-1979q3 (1.10, 0.47) 1965q1-1979q3
ŷt −0.092 −0.176

[−0.272,−0.079]
−0.682 −0.775

[−1.034,−0.516]

Obs. 55 55
R2 0.201 0.405

The results indicate that GDP targeting does enlarge the mean reversion of output both in

forecast and in reality. The intuition has been highlighted in Proposition 5.

Stablization Mechanism. As in Proposition 3, the current output is determined by the

nowcast of interest rate, the nowcast of output, and the forecast of output. When the federal

fund rate does not respond much to output gaps, lower interest rate raises the output growth

not through the nowcast or forecast of output, but through the nowcast of interest rate. As a

result, Taylor Rule stabilizes the economy not through making expectations mean reverting,

but through making the economic outcomes much more mean reverting than expectations.
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6.3 Great Recession

Missing Deflation. Under rational expectations, permanent negative demand gaps can

make deflation explode. This implies that strong deflation would be observed if the demand

gap is very persistent. In level-k DSGE, this is no longer the case.

Proposition 8. For hypothetical permanent output gap ŷperm without aggregate shocks,

πe,(k)
perm =(k − 1) · (1− θ)κy ŷperm,

π(k)
perm =k · (1− θ)κy ŷperm.

This proposition indicates that permanent output gap is compatible stable inflation. However,

it does not mean that the monetary authority can permanently raise the output level. Suppose

it does, then the original inflation target can no longer be maintained, and it is no longer

innocuous to assume that households are unaware of it.

With estimated parameters, 1.0% permanent downturn generates 0.1% disinflation expecta-

tions and 0.4% disinflation. The lack of drop in inflation expectations is a fact that has been

explored by Negro, Giannoni, and Schorfheide (2015). Level-k DSGE interprets it as the lack

of deep reasoning, instead of anything from surprise.

The observational equivalent model in Proposition 7 will produce the same size of deflation if

the output gap lasts for 4 years. Yet, that model will produce a drop of inflation expectations

to the same size of the drop of inflation, which does not happen during the Great Recession.

Stagnant Recovery Expectations. Consider an economy initially with a negative output

gap, and no aggregate shocks. The natural rate of interest has changed permanently by ∆r̂n,

and the federal fund rate is binded at zero until the output gap becomes non-negative.

Proposition 9. Denote π̂SS as the inflation target. When there are no exogenous shocks, for

k ∈ [1, 2], during the liquidity trap, we have

ŷ
e,(k)
t+s|t−1 = ŷt−1 + (s + 1)(k − 1)

ω

1− γ
(π̂SS + ∆r̂n).
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With estimated parameters, (k − 1) ω
1−γ = 0.125, which indicates very slow expected recovery.

This is confirmed by Figure 11. In the figure, the average index of business condition change

after the end of 2009 is nearly the same as that before, which supports the model implication

that households do not expect strong recovery during the Great Recession.
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Figure 11: Stagnant Recovery Expectations

This figure overturns the common belief that the economy would recover very fast after the

recession. If their forecasts are relevant for economic decisions, then what we need to explain

in the model is not why recovery is surprisingly slow, but whether the slow recovery can be

the consequence of pessimistic expectations.

Slow Recovery. Now consider a numerical example, in which the neutral rate of interest

in terms of discount factor drops by 1.5% permanently, and the economy starts with some

negative output gaps. Nominal interest rate is trapped as zero until output is fully recovered.

All shocks are turned off.

As in Figure 12, the output recovery can be very slow if the natural rate of interest is low as

well, and the recovery is slower if the initial output gap is larger.
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Figure 12: Slow Recovery

Proposition 3 and 9 jointly provide the intuition why the recovery can be so lower. In both

propositions, planning horizon plays a very important role. According to Proposition 9, given

a long period of lower interest rate stimulus, households would expect very strong recovery

if γ is close to one. According to Proposition 3, given some expectations of recovery, large

negative output gap cannot be sustained if γ is close to one.

6.4 Forward Guidance

Amplifying or Dampening. Similar to Farhi and Werning (2017), the initial response of

output to an interest rate shock in future will be dampened by level-k. However, due to the

different specification of level-0, the effects of monetary shocks are accumulated across time.

The ultimate effect of forward guidance may not be small. It just takes a while to fully realize.

Policy Experiment. Now consider a thought experiment that the t +τ period interest rate

expectation is shocked by −1 percentage point. All other shocks are turned off. Interest rates

are pegged before the shock, and follow the Taylor Rule otherwise.
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Proposition 10. Under this environment, for k ∈ [1, 2] and s ∈ [0, τ − 1] ∩ N,

ŷ
e,(k)
t+1+s|t−1 =ŷt−1 − (k − 1)ω

γτ−s−1 − γτ+1

1− γ
r̂
e,(k)
t+τ |t−1,

π̂
e,(k)
t+1+s|t−1 =(k − 1)κŷ

e,(k)
t+s|t−1.

Figure 13 plots the dynamic effects of forward guidance with a −1% shock in interest rate

at 1-10 years horizons. The results indicate that forward guidance at shorter horizons have

larger initial responses, but those at longer horizons can have larger cumulative effects.
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Figure 13: Horizon Effect of Forward Guidance

This result implies that forward guidance can be effective only if the central bank keeps the

announcement for a while and if the announcement is too far away in the future, it will be

very difficult to detect its effect empirically.
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7 Conclusion

This paper establishes a level-k DSGE framework for monetary policy analysis. A recursive

level-k equilibrium is established to handle endogenous state variables, and incomplete mar-

kets are introduce to discipline households’ planning horizons, as well as guarantee eductive

stability. The framework is easy to use and has transparent mechanisms.

The model structure and expectation data help identify parameter k. The interaction between

households and firms allows us to use output growth and inflation expectations to separate

direct and indirect transmission channels. The expectation data support the model implication

that indirect channels are missing, while direct channels are weak in households’ forecast rules.

The formal evidence identifies k ∈ [1, 2], while the later evidence identifies the exact value of

k . Level-k also has data supported implications different from limited attention.

The model performance is evaluated under four alternative monetary policies. Under the Tay-

lor Rule during the Great Moderation, the model well captures the impulse response functions

to federal fund rate shocks, and is observationally equivalent to a rational expectations model

with external habit, working capital loans and very sticky marginal cost production in terms

of output and inflation dynamics. In the pre-Volcker era, the more active GDP targeting

rule can partially explain why growth forecasts are more aligned with the backcasts. In the

Great Recession, when interest rate is trapped at zero, the model can explain the both the

missing deflation, and the missing drop in inflation expectations. It also well captures the

stagnant recovery expectations as in the data, and produce very slow recovery under such

expectations. Under forward guidance shock, the model is consistent with the consensus that

the initial response should be small, but also indicates that forward guidance can be effective

if the announcement is kept for a few quarters.

There are still a few related research questions worth further exploring. First, planning horizon

has larger effects on equilibrium dynamics under non-rational expectations, but it is still not

clear under what general conditions, this part should be explicitly specified. Second, the dual

dynamic beauty contests in this paper only provides an example to separate direct and indirect

effects in expectation data. Wage stickiness will add one more beauty contest, and provides
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sharper views for inflation. Third, reasoning in terms of real variables actually involves some

level of rationality. The level-k model can be used to deal with this issue by initializing level-0

with nominal anchors. Forth, the level-k framework could be applied to finance related topics

in which long horizon expectations play a role, such as bubbles and private money. I leave all

these valuable questions for future research.
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Appendix A: Proofs

Proof of Proposition 1

Suppose b(k)(ζ, 0, S) > 0, Assumption 2 implies that b(k)(1, 0, S) < 0.

Consider households’ budget c (k)(ζ, 0, S) = W (k)(S) + D(k)(S)− b(k)(ζ, 0, S).

We must have c (k)(ζ, 0, S) < c (k)(1, 0, S).

This is contradictory to the concavity of perceived and actual value functions.

Proof of Lemma 3

Lemma 3. In the recursive level-k equilibrium, output satisfies

ŷ
(k)
t = (1− γ)

+∞∑
s=0

γs ŷ
e,(k)
t+1+s|t−1 − ω

+∞∑
s=0

γs(r̂
e,(k)
t+s|t−1 − π̂

e,(k)
t+1+s|t−1 + Et−1η

d
t+s), (1)

where γ = 1−
√

λζ|1ζ

λζ|1ζ+1−λζ|1
.

Consider a perfect foresighted optimization problem. With common income ŷt+1, the linearized

consumption of a just constrained household i in period t + 1 satisfies

ĉcon
i ,t+1 = âunc

i ,t+1 + ŷt+1. (2)

Denote λ = λζ|1ζ. The consumption of an unconstrained household i in period t satisfies

ĉunc
i ,t = (1− λ)ĉunc

i ,t+1 + λĉcon
i ,t+1 − ω(ηdt + r̂t − π̂t+1). (3)

âunc
i ,t+1 for unconstrained household i satisfies

âunc
i ,t+1 = âi ,t − ĉunc

i ,t + ŷt . (4)
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Combining equation (2)(3)(4) yields

(1 + λ)ĉunc
i ,t = (1− λ)ĉunc

i ,t+1 + λ(âi ,t + ŷt + ŷt+1)− ω(ηdt + r̂t − π̂t+1). (5)

Use guess and verify approach to find the expression of ĉunc
i ,t

ĉunc
i ,t = ιaâi ,t + ι0ŷt +

+∞∑
s=0

γs [ιy ŷt+s − ιrω(ηdt+s + r̂t+s − π̂t+1+s)].

ĉunc
i ,t+1 for households unconstrained in period t satisfies

ĉunc
i ,t+1 = ιa(âi ,t + ŷt − ĉunc

i ,t ) + ι0ŷt+1 +
+∞∑
s=0

γs [ιy ŷt+1+s − ιrω(ηdt+1+s + r̂t+1+s − π̂t+2+s)].

Compare the coefficient of ât in equation (5) to get ιa

(1 + λ)ιa = (1− λ)ιa(1− ι`ιa) + λ =⇒ ιa =

√
λ

1 +
√
λ

.

Compare the coefficient of {ŷt , ŷt+2, ŷt+1} in equation (5) to get ι0 + ιy , γ and ιy

(1 + λ)(ι0 + ιy ) = (1− λ)ιa(1− ι0 − ιy ) + λ =⇒ ι0 + ιy = ιa.

(1 + λ)γ2ιy = (1− λ)(−ιaγ2ιy + γιy ) =⇒ γ = 1−
√
λ.

(1 + λ)γιy = (1− λ)(−ιaγιy + ι0 + ιy ) + λ =⇒ ιy = γ−1(ι0 + ιy ).

Compare coefficients on ηdt + r̂t − π̂t+1 in equation (5) to get ιr

−(1 + λ)ιrω = (1− λ)ιaιrω − ω =⇒ ιr = 1− (ι0 + ιy ).
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In the equilibrium, we have ŷt = ĉunc
i ,t and âi ,t = 0 and then

ŷt = (1− γ)
+∞∑
s=0

γs ŷt+1+s − ω
+∞∑
s=0

γs(ηdt+s + r̂t+s − π̂t+1+s).

Now, impose level-k on it and obtain

ŷ
(k)
t = (1− γ)

+∞∑
s=0

γs ŷ
e,(k)
t+1+s|t−1 − ω

+∞∑
s=0

γs(r̂
e,(k)
t+s|t−1 − π̂

e,(k)
t+1+s|t−1 + Et−1η

d
t+s).

Proof of Lemma 4

Lemma 4. In the recursive level-k equilibrium, inflation satisfies

π̂
(k)
t =(1− θ)

+∞∑
s=0

θs((1− θ)κy ŷ
e,(k)
t+s|t−1 + π̂

e,(k)
t+s|t−1)− κz

1− θ
1− θρz

ηzt ,

where (κy ,κz) =
(

1−α
α
ε− (1− α)(ε− 1), 1−α

α
ε + 1

)
.

The optimal price satisfies

p̂a
t =(1− θ)

+∞∑
s=0

θs
s∑

τ=0

π̂
e,(k)
t+τ |t−1 + (1− θ)

+∞∑
s=0

θs(κy ŷ
e,(k)
t+s|t−1 − κzEt−1η

z
t+s)

=(1− θ)
+∞∑
τ=0

+∞∑
s=τ

θs π̂
e,(k)
t+τ |t−1 + (1− θ)

+∞∑
s=0

θs(κy ŷ
e,(k)
t+s|t−1 − κzEt−1η

z
t+s)

=
+∞∑
s=0

θs π̂
e,(k)
t+s|t−1 + (1− θ)

+∞∑
s=0

θs(κy ŷ
e,(k)
t+s|t−1 − κzEt−1η

z
t+s).

According to the price aggregator,

π̂t = (1− θ)p̂a
t .
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Proof of Lemma 5

Lemma 5. The expected cumulative effect of interest rate is,

+∞∑
s=0

γs r̂
e,(k)
t+s|t−1 =

1

1− γρr

[
ρr r̂t−1 + (1− ρr )

+∞∑
s=0

γs(φππ̂
e,(k)
t+s|t−1 + φy ŷ

e,(k)
t+s|t−1)

]
.

The interest rate forecast satisfies

r̂
e,(k)
t+s|t−1 =ρr r̂

e,(k)
t+s−1|t−1 + (1− ρr )(φππ̂

e,(k)
t+s|t−1 + φy ŷ

e,(k)
t+s|t−1) + σrEt−1ε

r
t+s|t−1

=ρs+1
r r̂t−1 + (1− ρr )

s∑
τ=0

ρτr (φππ̂
e,(k)
t+s−τ |t−1 + φy ŷ

e,(k)
t+s−τ |t−1) + σr

s∑
τ=0

ρτrEt−1ε
r
t+s−τ

=ρs+1
r r̂t−1 + (1− ρr )

s∑
τ=0

ρs−τr (φππ̂t+τ |t−1 + φy ŷt+τ |t−1) + σr

s∑
τ=0

ρs−τr Et−1ε
r
t+τ .

Use the following identity

+∞∑
s=0

γs
s∑

τ=0

ρs−τr =
+∞∑
s=0

s∑
τ=0

γsρs−τr =
+∞∑
τ=0

+∞∑
s=τ

γsρs−τr

=
1

1− γρr

+∞∑
τ=0

γτ =
1

1− γρr

+∞∑
s=0

γs .

The cumulative effect of interest rate forecasts becomes

+∞∑
s=0

γs r̂
e,(k)
t+s|t−1

=
+∞∑
s=0

γs

[
ρs+1
r r̂t−1 + (1− ρr )

s∑
τ=0

ρs−τr (φππ̂
e,(k)
t+τ |t−1 + φy ŷ

e,(k)
t+τ |t−1) + σr

s∑
τ=0

ρs−τr Et−1ε
r
t+τ

]

=
1

1− γρr

[
ρr r̂t−1 + (1− ρr )

+∞∑
s=0

γs(φππ̂
e,(k)
t+s|t−1 + φy ŷ

e,(k)
t+s|t−1) + σr

+∞∑
s=0

γsEt−1ε
r
t+s

]
.
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Proof of Proposition 2

Proposition 2 can be proved by combining Lemma 3, Lemma 4 and Lemma 5.

Proof of Corollary 1

Change all time index t to t+1 in equation (1) and forecast it based on period t−1 information.

ŷ
(k)
t+1 = (1− γ)

+∞∑
s=0

γs ŷ
e,(k)
(t+2+s|t)|t−1 − ω

+∞∑
s=0

γs(r̂
e,(k)
(t+1+s|t)|t−1 − π̂

e,(k)
(t+2+s|t)t−1 + Et−1η

d
t+1+s),(6)

Combine equation (1) and (6), and we can get it.

Proof of Proposition 3

Follow Proposition 2 directly.

Proof of Lemma 2

Set ρr = φπ = ηd = ηz = 0 in Proposition 3, and we can get

ŷ
(k)
t = −ωφy ŷ

e,(k)
t|t−1 +

(
1− ωγ

1− γ
φy

)
(1− γ)

+∞∑
s=0

γs ŷ
e,(k)
t+1+s|t−1. (7)

Since the only state variable now is ŷt−1, and it must converge the 0 in the long run, the law of

motion becomes ŷ
(k)
t = ρ̂

(k)
y ŷt−1. When k ∈ [1, +∞)∩N, the perceived law of motion becomes

ŷ
e,(k)
t+s|t−1 = (ρ

e,(k)
y )s+1ŷt−1 = (ρ

(k−1)
y )s+1ŷt−1.

Substituting the actual and perceived law of motion back to equation (7) yields Lemma 2.
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Proof of Proposition 4

When |ρ(k−1)
y | ≤ 1,

ρ
(k)
y

ρ
(k−1)
y

is monotonic in ρ
(k−1)
y . Hence, we only need to check the bounds.

When ρ
(k−1)
y = 1, eductive stability requires

ρ
(k)
y

ρ
(k−1)
y

= 1− ω

1− γ
φy > −1 =⇒ γ < 1− 1

2
ωφy .

When ρ
(k−1)
y = −1, eductive stability requires

ρ
(k)
y

ρ
(k−1)
y

= −ωφy −
(

1− ωγ

1− γ
φy

)
1− γ
1 + γ

= −1− γ
1 + γ

− ω

1 + γ
φy > −1 =⇒ γ >

1

2
ωφy .

Once these conditions are satisfied, | ρ
(k)
y

ρ
(k−1)
y

| ≤ M for M = max
{
|1− ω

1−γφy |, 1−γ
1+γ

+ ω
1+γ

φy

}
.

Proof of Proposition 5

Base on the initialization of level-0, we have

ŷ
e,(1)
t|t−1 = ŷt−1, π̂

e,(1)
t|t−1 = 0.

This implies that in He,(1), output is full anchored. Hence,

ŷ
e,(1)
t+s|t−1 = ŷt−1.

Applied this output forecasts in Proposition 2, we get

ŷ
e,(2)
t|t−1 − ŷt−1 =ω

(
− 1− ρr

1− γρr
φy

1− γ
ŷt−1 −

ρr
1− γρr

r̂t−1 −
1

1− γρd
ηdt

)
,

π̂
e,(2)
t|t−1 =κ

(
ŷt−1 − ω

1− θ
1− θρz

ηzt

)
.

For k ∈ [1, 2], (ŷ
e,(k)
t|t−1, π̂

e,(k)
t|t−1) = (2− k)(ŷ

e,(1)
t|t−1, π̂

e,(1)
t|t−1) + (k − 1)(ŷ

e,(2)
t|t−1, π̂

e,(2)
t|t−1).
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Proof of Corollary 2

When ηdt = ηzt = 0 and k ∈ [1, 2], the perceived aggregate law of motion becomes[
ŷ
e,(k)
t|t−1

r̂
e,(k)
t|t−1

]
=

[
1 −(k − 1) ωρr

1−γρr
(k − 1)(1− ρr )[(1− θ)(ω−1 + ξ−1)φπ + φy ] ρr − (k − 1) ωρr

1−γρr (1− ρr )φy

][
ŷt−1

r̂t−1

]
.

Denote the perceived law of motion as ĥe,(k), then[
ŷ
e,(k)
t+s|t−1

r̂
e,(k)
t+s|t−1

]
= (ĥe,(k))s+1

[
ŷt−1

r̂t−1

]
.

Hence, ŷ
e,(k)
t+3|t−1 can be obtained directly, and π̂

e,(k)
t+3|t−1 can be obtained from

π̂
e,(k)
t+3|t−1 = (k − 1)κŷ

e,(k)
t+2|t−1.

Proof of Proposition 6 and Proposition 8

Following Proposition 2 directly.

Proof of Proposition 7

Consider an external habit model with no uncertainty

ŷt − ŷt−1 =
1− wyss(1− ω)

h
(ŷt+1 − ŷt)−

1− h

h
ω(r̂t − π̂t+1),

π̂t =
(1− θ)(1− βf θ)

θ

[
ψ

(
1

1− h
ŷt −

h

1− h
ŷt−1

)
+ r̂t

]
+ π̂t+1,

r̂t =ρr r̂t−1 + (1− ρr )(φππ̂t + φy ŷt).
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Suppose the actual law of motion is identical to the level-k model, then

Γys,(k) − Γy =
1− wyss(1− ω)

h
(Γys,(k) − Γy )Γss,(k) − 1− h

h
ω(Γr − Γπs,(k))Γss,(k),

Γπs,(k) =
(1− θ)(1− βf θ)

θ

[
ψ

(
1

1− h
Γys,(k) − h

1− h
Γy

)
+ Γrs,(k)

]
+ βf Γπs,(k)Γss,(k).

The new set of parameters can be solved as

[
1−wyss(1−ω)

h
1−h
h
ω
]

=(Γys,(k) − Γy )(Γss,(k))−1

[
Γys,(k) − Γy

Γπs,(k) − Γr

]−1

,

[
(1−θ)(1−βf θ)

θ
ψ (1−θ)(1−βf θ)

θ

]
=Γπs,(k)(I− βf Γss,(k))

[
1

1−hΓys,(k) − h
1−hΓy

Γrs,(k)

]−1

.

Proof of Proposition 9

When nominal interest rate becomes zero, it declines πSS compared to the original steady state.

As the natural rate of interest changes by r̂n, the interest rate gap becomes r̂t = −(πSS + r̂n)

in the liquidity trap. Neither level-0 nor level-1 households react to expectations on future.

ŷ
e,(2)
t+s|t−1 =ŷt−1 + (s + 1)

ω

1− γ
(π̂SS + r̂n),

π̂
e,(2)
t+s|t−1 =κŷ

e,(2)
t−1+s|t−1.

For k ∈ [1, 2], (ŷ
e,(k)
t|t−1, π̂

e,(k)
t|t−1) = (2− k)(ŷ

e,(1)
t|t−1, π̂

e,(1)
t|t−1) + (k − 1)(ŷ

e,(2)
t|t−1, π̂

e,(2)
t|t−1).

Proof of Proposition 10

The proof is identical to Proposition 9 except that

ŷ
e,(2)
t+1+s|t−1 = ŷt−1 − ω

s+1∑
ν=0

γτ−ν r̂
e,(k)
t+τ |t−1 = ŷt−1 − ω

γτ−s−1 − γτ+1

1− γ
r̂
e,(k)
t+τ |t−1.
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Appendix B: Solving the Model with Endogenous Labor Supply

The standard solution procedure for rational expectations DSGE models cannot be directly

applied here. Hence, it is useful to describe how to write the model into a state space form.

Use Γ to denote the coefficients in linearized equilibrium objects, and the solution procedure

can be briefly described in the following.

1. Solve for Γca,e without using equilibrium objects.

2. Initialize (Γys,e,(1), Γπs,e,(1), Γws,e,(1), Γτs,e,(1)) from level-0, and obtain Γss,e,(1).

3. Solve for Γcs,e,(1) from the perceived households’ problem.

4. Solve for (Γys,(1), Γ`s,(1), Γws,(1), Γτs,(1)) from the temporary equilibrium.

5. Solve for Γπs,(1) from the firms’ problem, and obtain Γss,(1).

6. Use (Γys,e,(j+1), Γπs,e,(j+1), Γws,e,(j+1), Γτs,e,(j+1)) = (Γys,(j), Γπs,(j), Γws,(j), Γτs,(j)) to update.

7. Obtain the state space representation.

Step 1: Solve for Γca,e

Log-linearizing the optimality conditions for the constrained households yields

ω−1ĉe(ζ) =ŵ e − ξ−1 ˆ̀e(ζ),

ĉe(ζ) =â + wySS(ŵ e + τ̂ e + ˆ̀e(ζ)).

(Γca,e(ζ), Γ`a,e(ζ)) can be obtained from[
ω−1 ξ−1

1 −wySS

][
Γca,e(ζ)

Γ`a,e(ζ)

]
=

[
0

1

]
.

The solution is Γca,e(ζ) = 1
1+ξω−1wySS

.
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The unconstrained households have

ĉe(1) =− ω(ηd + r̂ e − π̂e ′) + λĉe ′(1) + (1− λ)ĉe ′(ζ),

âe ′(1) =(RSS/ΠSS)[â + wySS(ŵ e + τ̂ e + ˆ̀e(1))− ĉe(1)],

ˆ̀e(1) =ξŵ e − ξω−1ĉe(1).

(Γca,e(1), Γ`a,e(1), Γaa,e(1)) satisfy

Γca,e(1) =[λΓca,e(1) + (1− λ)Γca,e(ζ)]Γaa,e(1),

Γaa,e(1) =(RSS/ΠSS)(1 + wySSΓ`a,e(1)− Γca,e(1)),

Γ`a,e(1) =− ξω−1Γca,e(1).

This yields a quadratic function for Γca,e(1)

(ΠSS/RSS)Γca,e(1) =[λΓca,e(1) + (1− λ)Γca,e(ζ)][1− (1 + ξω−1wySS)Γca,e(1)].

Solving λ from Γca,e(1) yields

λ =
Γca,e(ζ)− Γca,e(1) (ΠSS/RSS )

1−(1+ξω−1wySS )Γca,e(1)

Γca,e(ζ)− Γca,e(1)
.

The notation λ = λ1

λ1+(1−λ1)ζ
yields

λ1 = [1 + (λ−1 − 1)ζ
−1

]−1.

The fraction of hand-to-mouth households λHtM satisfies

λHtM =(1− λ1)/(2− λ1 − λ2),

λ2 =1− (1− λ1)(1− λHtM)/λHtM .
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Step 2: Initialize (Γys,e,(1), Γπs,e,(1), Γws,e,(1), Γτs,e,(1)) and Γss,e,(1)

Specify the level-1 expectations.

Γys,e,(1)ŝ =ŷ−,

Γπs,e,(1)ŝ =0,

Γ`s,e,(1)ŝ =ŷ− − ηz ,

Γws,e,(1) =ω−1Γys,e,(1) + ξ−1Γ`s,e,(1),

Γτs,e,(1) =wy−1
SS Γys,e,(1) − Γ`s,e,(1) − Γws,e,(1).

According to the perceived Taylor Rule,

Γrs,e,(1) = ρrΓ
r + (1− ρr )(φπΓπs,e,(1) + φyΓys,e,(1)).

The state variable is ŝ = (ŷ−, r̂−, ηd , ηz). Γss,e,(1) can be obtained from (Γys,e,(1), Γrs,e,(1)) and

the exogenous law of motion for (ηd , ηz).

Step 3: Solve for Γcs,e,(1)

Recall the optimality conditions of the constrained households

ω−1ĉe(ζ) =ŵ e − ξ−1 ˆ̀e(ζ),

ĉe(ζ) =â + wySS(ŵ e + τ̂ e + ˆ̀e(ζ)).

(Γcs,e,(1)(ζ), Γ`s,e,(1)(ζ)) can be obtained from[
ω−1 ξ−1

1 −wySS

][
Γcs,e,(1)(ζ)

Γ`s,e,(1)(ζ)

]
=

[
Γws,e,(1)

wySS(Γws,e,(1) + Γτs,e,(1))

]
.
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Recall the optimality conditions of the unconstrained households

ĉe(1) =− ω(ηd + r̂ e − π̂e ′) + λĉe ′(1) + (1− λ)ĉe ′(ζ),

âe ′(1) =(RSS/ΠSS)[â + wySS(ŵ e + τ̂ e + ˆ̀e(1))− ĉe(1)],

ˆ̀e(1) =ξŵ e − ξω−1ĉe(1).

(Γcs,e,(1)(1), Γ`s,e,(1)(1), Γas,e,(1)(1)) satisfy

Γcs,e,(1)(1) =− ω(Γds + Γrs,e,(1) − Γπs,e,(1)Γss,e,(1))

+ [λΓca,e,(1)(1) + (1− λ)Γca,e,(1)(ζ)]Γas,e,(1)(1),

+ [λΓcs,e,(1)(1) + (1− λ)Γcs,e,(1)(ζ)]Γss,e,(1),

Γas,e,(1)(1) =(RSS/ΠSS)[wySS(Γws,e,(1) + Γτs,e,(1) + Γ`s,e,(1)(1))− Γcs,e,(1)(1)],

Γ`s,e,(1)(1) =ξΓws,e,(1) − ξω−1Γcs,e,(1)(1).

Eliminate (Γ`s,e,(1)(1), Γas,e,(1)(1)) to obtain a single equation of Γcs,e,(1)(1)

Γcs,e,(1)(1) =− ω(Γds + Γrs,e,(1) − Γπs,e,(1)Γss,e,(1))

+ [λΓca,e,(1)(1) + (1− λ)Γca,e,(1)(ζ)]

· (RSS/ΠSS){wySS [(1 + ξ)Γws,e,(1) + Γτs,e,(1)]− (1 + ξω−1wySS)Γcs,e,(1)(1)},

+ [λΓcs,e,(1)(1) + (1− λ)Γcs,e,(1)(ζ)]Γss,e,(1).

The solution for Γcs,e,(1)(1) is

Γcs,e,(1)(1) ={(RSS/ΠSS)wySS [λΓca,e,(1)(1) + (1− λ)Γca,e,(1)(ζ)][(1 + ξ)Γws,e,(1) + Γτs,e,(1)]

+ (1− λ)Γcs,e,(1)(ζ)Γss,e,(1) − ω(Γds + Γrs,e,(1) − Γπs,e,(1)Γss,e,(1))}

{I + (RSS/ΠSS)(1 + ξω−1wySS)[λΓca,e,(1)(1) + (1− λ)Γca,e,(1)(ζ)] ∗ I− λΓss,e,(1)}−1.
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Step 4: Solve for (Γys,(1), Γ`s,(1), Γws,(1), Γτs,(1))

The temporary equilibrium satisfies

ŷ =− ω(ηd + r̂ e − π̂e ′) + λĉe ′(1) + (1− λ)ĉe ′(ζ),

ˆ̀ =ŷ − ηz ,

ŵ =ξ−1 ˆ̀+ ω−1ŷ ,

τ̂ =wy−1
SS ŷ − ˆ̀− ŵ .

(Γys,(1), Γ`s,(1), Γws,(1), Γτs,(1)) can be obtained from

Γys,(1) =− ω(Γd + Γrs,e,(1) − Γπs,e,(1)Γss,e,(1)) + [λΓcs,e,(1)(1) + (1− λ)Γcs,e,(1)(ζ)]Γss,e,(1),

Γ`s,(1) =Γys,(1) − Γz ,

Γws,(1) =ξ−1Γ`s,(1) + ω−1Γys,(1),

Γτs,(1) =wy−1
SS Γys,(1) − Γ`s,e,(1) − Γws,(1).

Step 5: Solve for Γπs,(1) and Obtain Γss,(1)

Denote βf = ΠSS/RSS The linearized Phillips Curve with arbitrary expectations Ẽt is

π̂t =(1− θ)(1− βf θ)
∞∑
s=0

(βf θ)sẼt(ŵt+s − ηzt+s) + (1− θ)
∞∑
s=0

(βf θ)sẼt π̂t+s .

The matrix representation for (Γπs,(1), Γrs,(1)) is

Γπs,(1) =(1− θ)

{
[(1− βf θ)Γws,e,(1) + Γπs,e,(1)](I− βf θΓss,e,(1))−1 − 1− βf θ

1− βf θρz
Γz

}
,

Γrs,(1) =ρrΓ
r + (1− ρr )(φπΓπs,(1) + φyΓys,(1)).

Γss,(1) can be obtained from (Γys,(1), Γrs,(1)) and the exogenous law of motion for (ηd , ηz).
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Step 6: Update Expectations

For ∀k ∈ [1, +∞), first update expectations to [k] using

(Γys,e,(j+1), Γπs,e,(j+1), Γws,e,(j+1), Γτs,e,(j+1)) = (Γys,(j), Γπs,(j), Γws,(j), Γτs,(j)).

Level-k expectations are defined as

level-k = (1− k + [k]) · level-[k] + ([k]− k) · level-[k+1].

Step 7: State Space Representation

The transition equation is

ŝt+1 =


ŷt

r̂t

η̂dt+1

η̂zt+1

 = Γss,(k)


ŷt−1

r̂t−1

η̂dt

η̂zt

+


0

σmε
r
t

σdε
d
t

σzε
z
t

 .

The measurement equation isŷt+1 − ŷt

p̂t+1 − p̂t

r̂t

 =

Γys − Γy

Γπs

Γr

 ŝt+1.

The expectation equations and ex post counterparts are
ŷ e
t+4 − ŷt

p̂e
t+4 − p̂t

ŷt+4 − ŷt

p̂t+4 − p̂t

 =


Γys,e,(k)(Γss,e,(k))3 − Γy

Γπs,e,(k)
∑3

τ=0(Γss,e,(k))τ

Γys,(k)(Γss,(k))3 − Γy

Γπs,(k)
∑3

τ=0(Γss,(k))τ

 ŝt+1.
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