Procyclical Productivity in New Keynesian Models

Zhesheng Qiu City University of Hong Kong

José-Víctor Ríos-Rull University of Pennsylvania, UCL, CAERP

July 14, 2022

NBER Summer Institute 2022 Impulse and Propagation Mechanisms

- In the data, labor productivity is procyclical conditional on demand shocks. Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but
 - labor productivity still does not move sufficiently (Christiano et al., 2005), and
 - a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

- In the data, labor productivity is procyclical conditional on demand shocks. Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but

• labor productivity still does not move sufficiently (Christiano et al., 2005), and

- a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

- In the data, labor productivity is procyclical conditional on demand shocks. Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but
 - labor productivity still does not move sufficiently (Christiano et al., 2005), and
 - a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

- In the data, labor productivity is procyclical conditional on demand shocks. Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but
 - labor productivity still does not move sufficiently (Christiano et al., 2005), and
 - a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

- In the data, labor productivity is procyclical conditional on demand shocks. Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but
 - labor productivity still does not move sufficiently (Christiano et al., 2005), and
 - a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

- In the data, labor productivity is procyclical conditional on demand shocks. Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but
 - labor productivity still does not move sufficiently (Christiano et al., 2005), and
 - a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

- In the data, labor productivity is procyclical conditional on demand shocks. Yet, due to non-increasing returns in labor, models have a difficult time generating it.
- New Keynesian models use a variety of mechanisms such as (1) capital/labor utilization and (2) fixed cost of production to move productivity, but
 - labor productivity still does not move sufficiently (Christiano et al., 2005), and
 - a countercyclical labor share consistent with data is difficult to get (Cantore et al., 2021; Nekarda and Ramey, 2020), due to countercyclical markups.
- We propose a mechanism where productivity is increased as households exert effort to squeeze output out of the economy.
- Our theory shows analytically how this mechanism works and improves a lot the performance of a version of medium-scale DSGE (Christiano et al., 2016).
- We view it as a step forward in aligning the model with data.

Households care about

- 1. the number of varieties (need to be found with search effort), and
- 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

Key Ingredients of the Mechanism

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

Key Ingredients of the Mechanism

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - 1. increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - 1. increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - 1. increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - 1. increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - 1. increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

- Households care about
 - 1. the number of varieties (need to be found with search effort), and
 - 2. the quantity of each variety (need to be purchased with spending).
- Suitably chosen preferences ensure that more spending
 - 1. increases the number of varieties in the basket (available number of varieties > what a single household can find), and
 - 2. increases the purchases of each variety.
- Search effort matches with firms' production locations (dealt with a directed search protocol), which determines firms' occupancy rate.
- Since search effort is not measured as an input, higher occupancy rate looks like higher productivity.
- Unlike costly capital/labor utilization models, firms do not pay for this higher productivity.

- Each firm, as a variety producer, operates a continuum of locations, each of which has its own preinstalled inputs and identical production technology.
- A directed search protocol coordinates the matches of production locations with search effort in active markets indexed by price and tightness {*p*, *q*}.
- A CRS matching function $\psi(J(p,q), D(p,q))$ between firms J and search effort D in each market $\{p, q\}$. Market tightness is defined as $q = \frac{D(p,q)}{J(p,q)}$.
- Matching probabilities per unit of search effort and per firm are $\psi^h(q) \equiv \frac{\psi(J(p,q),D(p,q))}{D(p,q)}$ and

$$\psi^f(m{q})\equiv rac{\psi(J(p,q),D(p,q))}{J(p,q)}$$

- Each firm, as a variety producer, operates a continuum of locations, each of which has its own preinstalled inputs and identical production technology.
- A directed search protocol coordinates the matches of production locations with search effort in active markets indexed by price and tightness {p, q}.
- A CRS matching function $\psi(J(p,q), D(p,q))$ between firms J and search effort D in each market $\{p, q\}$. Market tightness is defined as $q = \frac{D(p,q)}{J(p,q)}$.
- Matching probabilities per unit of search effort and per firm are $\psi^h(q) \equiv \frac{\psi(J(p,q),D(p,q))}{D(p,q)}$ and

$$\psi^{f}(\boldsymbol{q})\equivrac{\psi(J(p,q),D(p,q))}{J(p,q)}$$

- Each firm, as a variety producer, operates a continuum of locations, each of which has its own preinstalled inputs and identical production technology.
- A directed search protocol coordinates the matches of production locations with search effort in active markets indexed by price and tightness {*p*, *q*}.
- A CRS matching function $\psi(J(p,q), D(p,q))$ between firms J and search effort D in each market $\{p,q\}$. Market tightness is defined as $q = \frac{D(p,q)}{J(p,q)}$.
- Matching probabilities per unit of search effort and per firm are $\psi^h(q) \equiv \frac{\psi(J(p,q),D(p,q))}{D(p,q)}$ and

$$\psi^f(q)\equiv rac{\psi(J(p,q),D(p,q))}{J(p,q)}$$

- Each firm, as a variety producer, operates a continuum of locations, each of which has its own preinstalled inputs and identical production technology.
- A directed search protocol coordinates the matches of production locations with search effort in active markets indexed by price and tightness {p, q}.
- A CRS matching function $\psi(J(p,q), D(p,q))$ between firms J and search effort D in each market $\{p,q\}$. Market tightness is defined as $q = \frac{D(p,q)}{J(p,q)}$.
- Matching probabilities per unit of search effort and per firm are $\psi^h(q)\equiv \frac{\psi(J(p,q),D(p,q))}{D(p,q)}$ and

$$\psi^{f}(\boldsymbol{q})\equivrac{\psi(J(p,q),D(p,q))}{J(p,q)}$$
 (occupa

- Consider a Single Goods Market $\{p, q\}$.
- Household's utility displays love for varieties \mathcal{I} and distaste of search effort d:

$$u\left(\int_{0}^{\mathcal{I}} c_{i}^{\frac{1}{\rho}} di, d\right) \quad \text{with} \quad \rho > 1.$$

• The varieties found depend on search effort d, and market tightness q:

$$\mathcal{I}=d \psi^h(q).$$

• When the only market available has price *p*, we get the budget constraint with nominal spending *e*

$$e \geq p \int_0^{\mathcal{I}} c_i \, di = p \, \mathcal{I} \, c.$$

- Consider a Single Goods Market {p, q}.
- Household's utility displays love for varieties \mathcal{I} and distaste of search effort d:

$$u\left(\int_{0}^{\mathcal{I}} c_{i}^{\frac{1}{\rho}} di, d
ight) \quad \text{with} \quad \rho > 1.$$

• The varieties found depend on search effort *d*, and market tightness *q*:

$$\mathcal{I}=d \psi^h(q).$$

• When the only market available has price *p*, we get the budget constraint with nominal spending *e*

$$e \geq p \int_0^{\mathcal{I}} c_i \, di = p \, \mathcal{I} \, c.$$

- Consider a Single Goods Market {p, q}.
- Household's utility displays love for varieties \mathcal{I} and distaste of search effort d:

$$u\left(\int_{0}^{\mathcal{I}} c_{i}^{\frac{1}{\rho}} di, d\right) \quad \text{with} \quad \rho > 1.$$

• The varieties found depend on search effort d, and market tightness q:

$$\mathcal{I}=d \psi^h(q).$$

• When the only market available has price *p*, we get the budget constraint with nominal spending *e*

$$e \geq p \int_0^{\mathcal{I}} c_i \, di = p \, \mathcal{I} \, c.$$

- Consider a Single Goods Market {p, q}.
- Household's utility displays love for varieties \mathcal{I} and distaste of search effort d:

$$u\left(\int_{0}^{\mathcal{I}} c_{i}^{\frac{1}{\rho}} di, d\right) \quad \text{with} \quad \rho > 1.$$

• The varieties found depend on search effort d, and market tightness q:

$$\mathcal{I} = d \psi^h(q).$$

• When the only market available has price *p*, we get the budget constraint with nominal spending *e*

$$e \geq p \int_0^{\mathcal{I}} c_i \, di = p \, \mathcal{I} \, c.$$

- Consider a Single Goods Market {p, q}.
- Household's utility displays love for varieties \mathcal{I} and distaste of search effort d:

$$u\left(\int_{0}^{\mathcal{I}} c_{i}^{\frac{1}{\rho}} di, d\right) \quad \text{with} \quad \rho > 1.$$

• The varieties found depend on search effort d, and market tightness q:

$$\mathcal{I} = d \psi^h(q).$$

• When the only market available has price *p*, we get the budget constraint with nominal spending *e*

$$e \geq p \int_0^{\mathcal{I}} c_i \, di = p \, \mathcal{I} \, c.$$

- Define an interim object that determines firm problem.
 - Let $\Phi(e, \overline{\nu})$ as the set of markets or pairs $\{p, q\}$, in which the household attains utility $\overline{\nu}$ when spending *e*.
 - Φ(e, v) implicitly defines a one-to-one mapping from price p to tightness q that we denote as q̃(e, v, p).
 - Associated to these markets, the household's optimal purchase of goods for each variety is denoted as $\tilde{c}(e, \bar{v}, p)$.
- These two objects are what firms take as given when solving their problem.

- Define an interim object that determines firm problem.
 - Let Φ(e, ν̄) as the set of markets or pairs {p, q}, in which the household attains utility ν̄ when spending e.
 - Φ(e, v) implicitly defines a one-to-one mapping from price p to tightness q that we denote as q̃(e, v, p).
 - Associated to these markets, the household's optimal purchase of goods for each variety is denoted as $\tilde{c}(e, \bar{v}, p)$.
- These two objects are what firms take as given when solving their problem.

- Define an interim object that determines firm problem.
 - Let Φ(e, ν̄) as the set of markets or pairs {p, q}, in which the household attains utility ν̄ when spending e.
 - Φ(e, v̄) implicitly defines a one-to-one mapping from price p to tightness q that we denote as q̃(e, v̄, p).
 - Associated to these markets, the household's optimal purchase of goods for each variety is denoted as $\tilde{c}(e, \bar{v}, p)$.
- These two objects are what firms take as given when solving their problem.

- Define an interim object that determines firm problem.
 - Let Φ(e, v̄) as the set of markets or pairs {p, q}, in which the household attains utility v̄ when spending e.
 - Φ(e, v̄) implicitly defines a one-to-one mapping from price p to tightness q that we denote as q̃(e, v̄, p).
- These two objects are what firms take as given when solving their problem.

- Define an interim object that determines firm problem.
 - Let Φ(e, v̄) as the set of markets or pairs {p, q}, in which the household attains utility v̄ when spending e.
 - Φ(e, v̄) implicitly defines a one-to-one mapping from price p to tightness q that we denote as q̃(e, v̄, p).
- These two objects are what firms take as given when solving their problem.

• For firms in each location, output occurs only when households show up. Consequently, the actual output is ψ^f times the potential output.

 Firms take as given nominal wages W, functions *c*(e, *v*, p) and *q*(e, *v*, p), and a Rotemberg style price adjustment cost χ(p) e to maximize profits:

$$\Omega(e, W, \overline{v}) = \max_{p} \left(p \ \psi^{f}(\widetilde{\boldsymbol{q}}(e, \overline{v}, p)) - W \right) \ \widetilde{\boldsymbol{c}}(e, \overline{v}, p) - \chi(p) \ e,$$

• For firms in each location, output occurs only when households show up. Consequently, the actual output is ψ^f times the potential output.

 Firms take as given nominal wages W, functions c̃(e, v̄, p) and q̃(e, v̄, p), and a Rotemberg style price adjustment cost χ(p) e to maximize profits:

$$\Omega(e, W, \overline{v}) = \max_{p} \left(p \psi^{f}(\widetilde{q}(e, \overline{v}, p)) - W \right) \ \widetilde{c}(e, \overline{v}, p) - \chi(p) \ e,$$

Equilibrium is a pair $\{P^*, Q^*\}$

• where households optimize

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utility) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $(\mathcal{E}(q) \equiv \frac{d \ln \psi^{f}(q)}{d \ln q})$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \ \boldsymbol{P}^{*} = rac{
ho}{
ho-1} \left[rac{W}{\boldsymbol{P}^{*} \ \psi^{f}(\boldsymbol{Q}^{*})} - rac{1}{
ho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})
ight)}
ight].$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue
- Marginal cost is the real wage noting that the firm is not fully occupied
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy ψ^f(Q^{*}) = 1 & ε(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{
ho}(\boldsymbol{P}^*) \; \boldsymbol{P}^* = rac{
ho}{
ho-1} \; \left[rac{W}{\boldsymbol{P}^* \; \cdot \; 1} - rac{1}{
ho \; (1- \; 0 \;)}
ight].$$

Equilibrium is a pair $\{P^*, Q^*\}$

• where households optimize

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (\boldsymbol{Q}^*)^{\rho - 1} = \zeta \cdot (\boldsymbol{Q}^*)^{1 + \nu},$$

- Households' FOC (for GHH utilitiy) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $\left(\mathcal{E}(q) \equiv \frac{d \ln \psi^{T}(q)}{d \ln q}\right)$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \psi^{f}(\boldsymbol{Q}^{*})} - \frac{1}{\rho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})\right)} \right]$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue
- Marginal cost is the real wage noting that the firm is not fully occupied
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy ψ^f(Q^{*}) = 1 & ε(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{
ho}(\boldsymbol{P}^*) \ \boldsymbol{P}^* = rac{
ho}{
ho-1} \ \left[rac{W}{\boldsymbol{P}^* \ \cdot \ 1} - rac{1}{
ho \left(1- \ 0 \
ight)}
ight]$$

Equilibrium is a pair $\{P^*, Q^*\}$

• where households optimize

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utilitiy) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $\left(\mathcal{E}(q) \equiv \frac{d \ln \psi^f(q)}{d \ln q} \right)$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \psi^{f}(\boldsymbol{Q}^{*})} - \frac{1}{\rho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})\right)} \right].$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue.
- Marginal cost is the real wage noting that the firm is not fully occupied
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy ψ^t(Q^{*}) = 1 & ε(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{
ho}(\boldsymbol{P}^*) \ \boldsymbol{P}^* = rac{
ho}{
ho-1} \ \left[rac{W}{\boldsymbol{P}^* \ \cdot \ \mathbf{1}} - rac{1}{
ho \left(1- \ \mathbf{0} \
ight)}
ight]$$

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utilitiy) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $\left(\mathcal{E}(q) \equiv \frac{d \ln \psi^f(q)}{d \ln q} \right)$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \psi^{f}(\boldsymbol{Q}^{*})} - \frac{1}{\rho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})\right)} \right]$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue
- Marginal cost is the real wage noting that the firm is not fully occupied
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy \u03c6^f(Q^{*}) = 1 & \u03c6(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{
ho}(\boldsymbol{P}^*) \ \boldsymbol{P}^* = rac{
ho}{
ho-1} \ \left[rac{W}{\boldsymbol{P}^* \ \cdot \ \ \mathbf{1}} - rac{1}{
ho \left(1- \ \ \mathbf{0} \ \
ight)}
ight]$$

• where households optimize

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utilitiy) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $\left(\mathcal{E}(q) \equiv \frac{d \ln \psi^f(q)}{d \ln q} \right)$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \psi^{f}(\boldsymbol{Q}^{*})} - \frac{1}{\rho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})\right)} \right].$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue.
- Marginal cost is the real wage noting that the firm is not fully occupied
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy ψ^f(Q^{*}) = 1 & ε(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{
ho}(\boldsymbol{P}^*) \ \boldsymbol{P}^* = rac{
ho}{
ho-1} \ \left[rac{W}{\boldsymbol{P}^* \ \cdot \ \ \mathbf{1}} - rac{1}{
ho \left(1- \ \ \mathbf{0} \ \
ight)}
ight]$$

7

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utilitiy) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $\left(\mathcal{E}(q) \equiv \frac{d \ln \psi^f(q)}{d \ln q} \right)$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \psi^{f}(\boldsymbol{Q}^{*})} - \frac{1}{\rho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})\right)} \right].$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue.
- Marginal cost is the real wage noting that the firm is not fully occupied.
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy ψ^t(Q^{*}) = 1 & ε(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{
ho}(\boldsymbol{P}^*) \ \boldsymbol{P}^* = rac{
ho}{
ho-1} \ \left[rac{W}{\boldsymbol{P}^* \ \cdot \ 1} - rac{1}{
ho \left(1- \ 0 \
ight)}
ight]$$

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utilitiy) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $\left(\mathcal{E}(q) \equiv \frac{d \ln \psi^f(q)}{d \ln q} \right)$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \psi^{f}(\boldsymbol{Q}^{*})} - \frac{1}{\rho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})\right)} \right]$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue.
- Marginal cost is the real wage noting that the firm is not fully occupied.
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy ψ^t(Q^{*}) = 1 & E(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{\rho}(\boldsymbol{P}^{*}) \ \boldsymbol{P}^{*} = rac{
ho}{
ho-1} \ \left[rac{W}{\boldsymbol{P}^{*} \cdot 1} - rac{1}{
ho \left(1-0
ight)}
ight].$$

$$\frac{e}{P^*} \cdot (\rho - 1) \cdot \psi^f (Q^*)^{\rho - 1} = \zeta \cdot (Q^*)^{1 + \nu},$$

- Households' FOC (for GHH utilitiy) reflects the trade-off between the love for varieties $\psi^f(Q^*)^{\rho-1}$ and the searching distaste $(Q^*)^{1+\nu}$.
- and firms also optimize $\left(\mathcal{E}(q) \equiv \frac{d \ln \psi^f(q)}{d \ln q} \right)$

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \psi^{f}(\boldsymbol{Q}^{*})} - \frac{1}{\rho \left(1 - \mathcal{E}(\boldsymbol{Q}^{*})\right)} \right].$$

- The left hand side is the marginal Rotemberg cost of changing the price.
- The term inside the bracket is marginal cost minus marginal revenue.
- Marginal cost is the real wage noting that the firm is not fully occupied.
- Marginal revenue takes into account that an increase in the quantity sold increases productivity via the increase in search effort of households.
- The standard case has full occupancy ψ^f(Q^{*}) = 1 & E(Q^{*}) = 0. The hhold condition disappears and the firm's optimality condition becomes

$$\chi_{\rho}(\boldsymbol{P}^{*}) \boldsymbol{P}^{*} = \frac{\rho}{\rho - 1} \left[\frac{W}{\boldsymbol{P}^{*} \cdot \mathbf{1}} - \frac{1}{\rho (1 - \mathbf{0})} \right].$$

• Perturbation of the equilibrium conditions yields

$$d\ln(\psi^{f}(Q^{*})) = \widetilde{\Psi} \cdot [d\ln(e) - d\ln(P^{*})],$$

$$d\ln(P^{*}) = \widetilde{\kappa} \cdot \left[d\ln(W) - d\ln(P^{*}) + (\widetilde{\gamma} - 1) d\ln(\psi^{f}(Q^{*}))\right].$$

• $(\widetilde{\Psi}, \widetilde{\gamma}, \widetilde{\kappa})$ are functions of deep parameters. They have to satisfy certain restrictions to ensure procyclical markups, inflation and real wages.

• $(\widetilde{\Psi}, \widetilde{\gamma})$ are new.

• $\widetilde{\Psi}$ captures the elasticity of occupancy rate $\psi^{t}(Q^{*})$ w.r.t. real spending $e/P^{*},$

• $\tilde{\gamma}$ captures the elasticity of gross desired markup ρ $(1 - \mathcal{E}(Q^*))$ w.r.t. occupancy rate $\psi^{\ell}(Q^*)$ (just an elgebraic connection).

$$d\ln(\psi^{f}(Q^{*})) = \widetilde{\Psi} \cdot [d\ln(e) - d\ln(P^{*})],$$

$$d\ln(P^{*}) = \widetilde{\kappa} \cdot \left[d\ln(W) - d\ln(P^{*}) + (\widetilde{\gamma} - 1) d\ln(\psi^{f}(Q^{*}))\right].$$

- $(\widetilde{\Psi}, \widetilde{\gamma}, \widetilde{\kappa})$ are functions of deep parameters. They have to satisfy certain restrictions to ensure procyclical markups, inflation and real wages.
- $(\widetilde{\Psi}, \widetilde{\gamma})$ are new.
 - $\widetilde{\Psi}$ captures the elasticity of occupancy rate $\psi^{t}(Q^{*})$ w.r.t. real spending $e/P^{*},$
 - $\tilde{\gamma}$ captures the elasticity of gross desired markup ρ $(1 \mathcal{E}(Q^*))$ w.r.t. occupancy rate $\psi^{\ell}(Q^*)$ (just an algebraic connection).

$$d\ln(\psi^{f}(Q^{*})) = \widetilde{\Psi} \cdot [d\ln(e) - d\ln(P^{*})],$$

$$d\ln(P^{*}) = \widetilde{\kappa} \cdot \left[d\ln(W) - d\ln(P^{*}) + (\widetilde{\gamma} - 1) d\ln(\psi^{f}(Q^{*}))\right].$$

- $(\tilde{\Psi}, \tilde{\gamma}, \tilde{\kappa})$ are functions of deep parameters. They have to satisfy certain restrictions to ensure procyclical markups, inflation and real wages.
- $(\widetilde{\Psi},\widetilde{\gamma})$ are new.
 - $\widetilde{\Psi}$ captures the elasticity of occupancy rate $\psi^f(Q^*)$ w.r.t. real spending e/P^* ,
 - $\tilde{\gamma}$ captures the elasticity of gross desired markup ρ $(1 \mathcal{E}(Q^*))$ w.r.t. occupancy rate $\psi^f(Q^*)$ (just an algebraic connection).

$$d\ln(\psi^{f}(Q^{*})) = \widetilde{\Psi} \cdot [d\ln(e) - d\ln(P^{*})],$$

$$d\ln(P^{*}) = \widetilde{\kappa} \cdot \left[d\ln(W) - d\ln(P^{*}) + (\widetilde{\gamma} - 1) d\ln(\psi^{f}(Q^{*}))\right].$$

- $(\tilde{\Psi}, \tilde{\gamma}, \tilde{\kappa})$ are functions of deep parameters. They have to satisfy certain restrictions to ensure procyclical markups, inflation and real wages.
- $(\widetilde{\Psi},\widetilde{\gamma})$ are new.
 - $\widetilde{\Psi}$ captures the elasticity of occupancy rate $\psi^f(Q^*)$ w.r.t. real spending e/P^* ,
 - $\tilde{\gamma}$ captures the elasticity of gross desired markup ρ $(1 \mathcal{E}(Q^*))$ w.r.t. occupancy rate $\psi^f(Q^*)$ (just an algebraic connection).

$$d\ln(\psi^{f}(Q^{*})) = \widetilde{\Psi} \cdot [d\ln(e) - d\ln(P^{*})],$$

$$d\ln(P^{*}) = \widetilde{\kappa} \cdot \left[d\ln(W) - d\ln(P^{*}) + (\widetilde{\gamma} - 1) d\ln(\psi^{f}(Q^{*}))\right].$$

- $(\widetilde{\Psi}, \widetilde{\gamma}, \widetilde{\kappa})$ are functions of deep parameters. They have to satisfy certain restrictions to ensure procyclical markups, inflation and real wages.
- $(\widetilde{\Psi}, \widetilde{\gamma})$ are new.
 - $\widetilde{\Psi}$ captures the elasticity of occupancy rate $\psi^f(Q^*)$ w.r.t. real spending e/P^* ,
 - $\tilde{\gamma}$ captures the elasticity of gross desired markup ρ $(1 \mathcal{E}(Q^*))$ w.r.t. occupancy rate $\psi^f(Q^*)$ (just an algebraic connection).

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - Capital utilization alone: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters Ψ and γ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - Capital utilization alone: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters Ψ and γ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - Capital utilization alone: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters Ψ and γ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - Capital utilization alone: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters Ψ and γ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - 1. **Capital utilization alone**: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - 2. Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters $\tilde{\Psi}$ and $\tilde{\gamma}$ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - 1. **Capital utilization alone**: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - 2. Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters $\tilde{\Psi}$ and $\tilde{\gamma}$ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - 1. **Capital utilization alone**: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - 2. Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters $\tilde{\Psi}$ and $\tilde{\gamma}$ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We embed this variable number of varieties with the search friction in a version of the *medium-scale NK model* in Christiano et al. (2016).
- We see how it performs vis a vis versions of the model w/o this mechanism.
 - We add labor productivity and labor share to the estimation targets.
 - We use Rotemberg instead of Calvo to avoid price dispersion issues and ignore the public sector (for convenience).
- We look at Three Models
 - 1. **Capital utilization alone**: Like Christiano et al. (2016) that estimates the curvature of utilization costs among many other things.
 - 2. Search alone: Infinite curvature of utilization costs but need to estimate two additional parameters $\tilde{\Psi}$ and $\tilde{\gamma}$ (elasticity of TFP w.r.t. real spending and that of desired markup w.r.t. TFP).
 - 3. Both capital utilization and search (benchmark)

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

- We estimate 15 parameters in the benchmark model
- to match 11 SVAR impulse responses of
 - real GDP, hours worked, real consumption, real investment, Fed funds rate,
 - capacity utilization, real wage, inflation, relative price of investment,
 - labor productivity, labor share,
- under 3 structural shocks of
 - Fed funds rate,
 - neutral technology,
 - investment-specific technology.

	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
		0.14	
		1.01	1.56
		0.76	
		117.1	167.1

	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53		0.14
Fixed cost of production / GDP	0.33	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
		0.76	
		117.1	167.1

	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
C. I	0.52		0.14
Steady-state markup Fixed cost of production / GDP	0.53 0.39	0.25 0.14	0.14 0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)		0.76	
		117.1	167.1

	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
		117.1	167.1

	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1

	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost	0.10		0.36
· ~	0.10	∞	
Elast. of TFP wrt real spending, Ψ	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	

	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Charles at the second second	0.52	0.05	0.14
Steady-state markup Fixed cost of production / GDP	0.53 0.39	0.25	0.14 0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost \sim	0.10		
Elast. of TFP wrt real spending, Ψ	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	0.79

	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.33	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost	0.10		
Elast. of TFP wrt real spending, Ψ	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	0.79

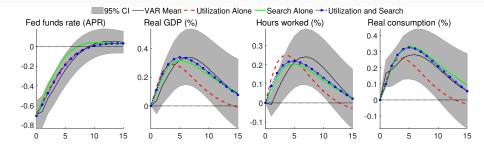
	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost \sim	0.10		
Elast. of TFP wrt real spending, Ψ	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	0.79

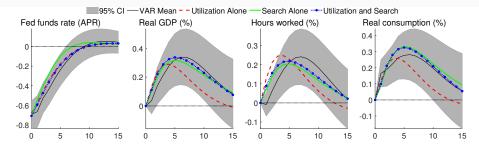
	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
			0.00
Curvature of capital utilization cost	0.10		
Elast. of TFP wrt real spending, Ψ	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	0.79

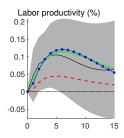
	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost \sim	0.10		
Elast. of TFP wrt real spending, Ψ	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	0.79

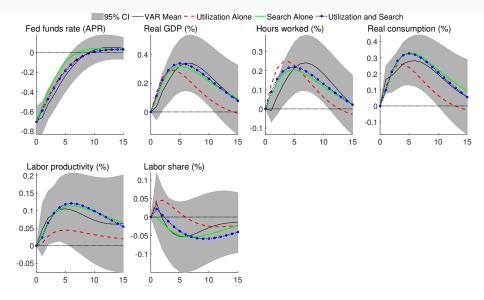
	Capital Util Alone (<i>u</i>)	Search Alone	Both u and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
	0.10		0.26
Curvature of capital utilization cost	0.10	∞	
Elast. of TFP wrt real spending, Ψ	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	

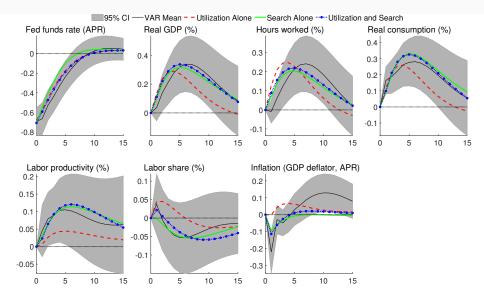
	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost	0.10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.36
Elast. of TFP wrt real spending, $\widetilde{\Psi}$	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	0.79

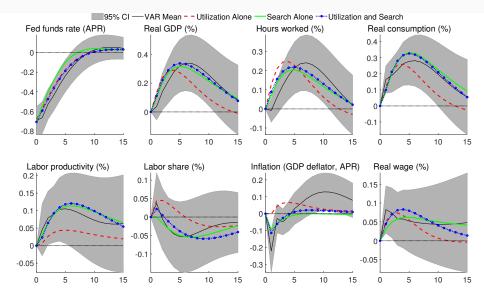

	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost	0.10	x	0.36
Elast. of TFP wrt real spending, $\tilde{\Psi}$	-	0.42	
Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	-	0.27	0.79


	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	0.96
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost Elast. of TFP wrt real spending, $\widetilde{\Psi}$ Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	0.10	∞	0.36
	-	0.42	0.39
	-	0.27	0.79


	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	0.96
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost Elast. of TFP wrt real spending, $\widetilde{\Psi}$ Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	0.10	∞	0.36
	-	0.42	0.39
	-	0.27	0.79


	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	0.96
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost Elast. of TFP wrt real spending, $\widetilde{\Psi}$ Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	0.10	∞	0.36
	-	0.42	0.39
	-	0.27	0.79


	Capital Util Alone (<i>u</i>)	Search Alone	Both <i>u</i> and Search
Steady-state markup	0.53	0.25	0.14
Fixed cost of production / GDP	0.39	0.14	0.03
Frisch elasticity of labor supply	9.09	1.01	1.56
<i>corr</i> (Markup, GDP FFR shocks)	0.06	0.76	0.96
Log marginal likelihood	3.8	117.1	167.1
Curvature of capital utilization cost Elast. of TFP wrt real spending, $\widetilde{\Psi}$ Elast. of desired markup wrt TFP, $\widetilde{\gamma}$	0.10	∞	0.36
	-	0.42	0.39
	-	0.27	0.79



- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- We propose a new mechanism of procyclical productivity in NK models.
- It is based on the notions that expenditures increase productivity temporarily due to additional search effort of the households.
- We show that the mechanism is easy to implement in a medium-scale DSGE.
- A version of Christiano et al. (2016) with our mechanism either substituting or complementing capital utilization has far superior performance:
 - 1. St-st markup, fixed cost, and the Frisch elasticity have very reasonable values.
 - 2. Markups conditional on Federal Funds shocks become procyclical.
 - 3. Log marginal likelihood has a huge improvement.
 - 4. Most IRFs, e.g. labor productivity and labor share, fit the data better.
- Hence, we think search frictions in goods markets should be considered as part of the standard ingredients in New Keynesian models.

- Cantore, C., F. Ferroni, and M. A. León-Ledesma (2021): "The Missing Link: Labor Share and Monetary Policy," Journal of the European Economic Association, Accepted.
- Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005): "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 113, 1–45.
- Christiano, L. J., M. S. Eichenbaum, and M. Trabandt (2016): "Unemployment and Business Cycles," Econometrica, 84, 1523–1569.
- Nekarda, C. J. and V. A. Ramey (2020): "The Cyclicality of the Price-Cost Markup," Journal of Money, Credit, and Banking: 50th Anniversary Issue, 52, 319–353.