Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

Service Inflation and Missing Pass-Through

Zhesheng Qiu City U of Hong Kong Yicheng Wang Peking U, PHBS Le Xu Shanghai Jiao Tong U, Antai

HKU Brownbag Macro Lunch November 16, 2021

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

MOTIVATING FACTS

• Service inflation normally co-moves with core but recently disconnect.

Figure 1: Year-on-Year Service CPI vs Core Inflation in the U.S.

Note: Service excludes energy services and transportation services. (*inflation*) spread = service inflation – core inflation, with sample mean 0.7%.

Introduction ○●○	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References

A Brief View

- Conventional View: Service $\approx 68\%$ core inflation basket. Natural to expect co-movement and no need to keep track of both.
- Question: Why disconnected recently?
- Answer:
 - Missing pass-through from costs to prices across service industries pre-2020.
 - Large cost shocks in 2021 \implies aggregate disconnection.
- Implication: Service inflation deserves special attention.
- Recent Literature:
 - Incomplete pass-through in manufacturing: Amiti et al. (2019).
 - Pipeline pressures in production networks: Smet et al. (2019).
 - Theory of oligopoly under Calvo pricing: Wang and Werning (2020).

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	00000000	00000000	0	

Outline

- Framework: A parsimonious model
 - multi-industry pass-through, price rigidities, production networks
- Evidence: Panel data regressions
 - all US industries, quarterly data, oil IV, rich heterogeneities controlled
 - model-based regressions, to estimate sector level pass-through
- Results: Quantitative studies of 2021Q2 service inflation gap
 - 0.3% with missing pass-through in service. (0.4% in data)
 - 1.3% with counter-factual complete pass-through.
 - Missing pass-through explains more than 1/3 of the recent disconnection.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	0000000	0	

MODEL IN A NUTSHELL

- Model: hetero pass-thru + price rigidities + production networks.
- Assumptions: no capital + CRS + fully sticky nominal wages.
- Free from Two Mechanisms:

 $\begin{array}{ll} \mathsf{output} \uparrow \implies \mathsf{returns} \; \mathsf{to} \; \mathsf{scale} \downarrow \implies \mathsf{price} \uparrow \\ \\ \mathsf{output} \uparrow \implies \mathsf{labor} \uparrow \implies \mathsf{wage} \uparrow \implies \mathsf{price} \uparrow \end{array}$

 \implies Irrelevance of output in modeling.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	0000000	0	

Pass-Through

- Monopolistic competition within each industry.
- Desired price p^* under marginal cost Φ and aggregate price P solves

$$\max_{p} (p-\Phi)D(p,P).$$

• The solution of p^* satisfies

 $d\ln p^* = \gamma^{\Phi} d\ln \Phi + \gamma^{P} d\ln P \quad \xrightarrow{\text{short notations}} \quad \widehat{p}^* = \gamma^{\Phi} \widehat{\Phi} + \gamma^{P} \widehat{P}.$

- $(\gamma^{\Phi}, \gamma^{P})$ depends on the demand function D(p, P).
- Missing Pass-through: $\gamma^{\Phi} \rightarrow 0$.

Introduction	A Parsimonious Model 00●0000	Panel Data Regressions	Quantitative Studies	Conclusion	References

Price Rigidity

• Given Calvo pricing parameter θ , discount factor β , and desired price \hat{p}_t^* , the optimal reset price \hat{p}_t^{opt} of each individual producer is a weighted average of desired price $\{\hat{p}_{t+s}^*\}$ subject to markup wedges $\{\xi_{t+s}\}$.

$$\widehat{\rho}_t^{opt} = (1 - \beta \theta) \sum_{s=0}^{+\infty} (\beta \theta)^s \cdot \mathbb{E}_t \left[\widehat{\rho}_{t+s}^* + \xi_{t+s} \right].$$

• The industry level price \widehat{P}_t satisfies

$$\widehat{P}_t = \theta \cdot \widehat{P}_{t-1} + (1-\theta) \cdot \widehat{p}_t^{opt}.$$

• Pass-Through + Price Rigidity:

$$\widehat{P}_t = \theta \widehat{P}_{t-1} + (1-\theta)(1-\beta\theta) \sum_{s=0}^{+\infty} (\beta\theta)^s \mathbb{E}_t \left[\gamma^{\Phi} \widehat{\Phi}_{t+s} + \gamma^P \widehat{P}_{t+s} + \xi_{t+s} \right].$$

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

PRODUCTION NETWORK

- N industries with input-output linkages.
- No capital + CRS + fully sticky nominal wages \implies

$$\widehat{\Phi}_{it} = \alpha_i \sum_{j=0}^{N} \omega_{ij} \widehat{P}_{jt}$$

in which $\{\alpha_i, \omega_{ij}\}$ are steady-state cost shares.

• Note that under log-linearization, the equation above does not depend on the exact functional forms of production technologies.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

ALL IN ONE EQUATION

• Log-linearized Solution:

$$\mathsf{P}_{t} = \Theta \mathsf{P}_{t-1} + (\mathbb{I} - \Theta) (\mathbb{I} - \beta \Theta) \sum_{s=0}^{+\infty} (\beta \Theta)^{s} \mathbb{E}_{t} [\Gamma^{\Phi} \underbrace{\alpha \Omega \mathsf{P}_{t+s}}_{\Phi_{t+s}} + \Gamma^{\mathsf{P}} \mathsf{P}_{t+s} + \xi_{t+s}].$$

- P_t: vector of endogenous industry level prices,
- $\boldsymbol{\xi}_t$: vector of exogenous industry level markup wedge,
- Γ^{Φ} : diagonal matrix of industry level pass-through,
- Γ^{P} : diagonal matrix of industry level strategic complementarities,
- Θ : diagonal matrix of industry level Calvo pricing parameters,
- lpha: diagonal matrix of industry level intermediate input cost shares,
- Ω : matrix of input-output table,
- β : common discount factor,
- $(\Theta, \alpha, \Omega, \beta)$: parameters to calibrate.
- e.g. Kimball Aggregator: $\Gamma^{\Phi} + \Gamma^{\mathsf{P}} = \mathbb{I} \implies \mathsf{NKPC}.$
- e.g. Complete Pass-through: $\Gamma^{\Phi} = \mathbb{I}$ and $\Gamma^{\mathsf{P}} = \mathbf{0}$.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

CALIBRATION AND OBSERVABLES

- Θ: Frequencies of quarterly price changes using confidential microdata underlying PPI from **BLS**, borrowed from Micheal Weber.
- (α, Ω) : The average of BEA annual I-O Tables during 2005Q1-2019Q4.
- $\beta = 0.9968$ (Christiano et al., 2016).
- \mathbf{P}_t and $\Omega \mathbf{P}_t$ observed from **BEA** 2005Q1-2019Q4 directly.

Introduction A Parsin	nonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000 00000	00	0000000	0000000	0	

Regression Equations

• Benchmark Regression ($\gamma_i^P = 0$):

$$\underbrace{\frac{\text{Price difference}_{it}}{\widehat{P}_{it} - \theta_i \widehat{P}_{it-1}} = \gamma_i^{\Phi} \cdot \underbrace{\frac{\text{Dynamic costm}_{it}}{(1 - \theta_i)(1 - \beta \theta_i) \sum_{s=0}^{4} (\beta \theta_i)^s \widehat{\Phi}_{is}} + \lambda_t + \mu_i + e_{it}.$$

- $\lambda_t:$ quarter dummies, exogenous aggregate wedges or GE effects.
- μ_i : industry dummies, nearly useless under detrended data.
- e_{it}: exogenous wedges, i.i.d. measurement erorrs, i.i.d. forecast errors.
- Myopic Calvo Pricing $(\gamma^P = 0_i, \beta = 0)$:

 $\underbrace{\underbrace{\mathsf{Price difference}_{it}}_{\widehat{P}_{it}-\theta_i\widehat{P}_{it-1}} = \gamma_i^{\Phi} \cdot \underbrace{\underbrace{\mathsf{Myopic costm}_{it}}_{(1-\theta_i)\widehat{\Phi}_{it}} + \lambda_t + \mu_i + e_{it}.$

• Flexible Price Case $(\gamma_i^P = 0, \ \theta_i = 0)$:

$$\underbrace{\operatorname{Price}_{it}}_{\widehat{P}_{it}} = \gamma_i^{\Phi} \cdot \underbrace{\operatorname{Input price}_{it}}_{\widehat{\Phi}_{it}} + \lambda_t + \mu_i + e_{it}.$$

11

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	●0000000	0000000	0	

INDUSTRY GROUPS

Table 1: Three Industry Groups in Regressions

#	NAICS	Industry names	#	NAICS	Industry names
		Manufacturing			Service
8	321	Wood products	40	511	Publishing industries, except internet (includes software)
9	327	Nonmetallic mineral products	41	512	Motion picture and sound recording industries
10	331	Primary metals	42	513	Broadcasting and telecommunications
11	332	Fabricated metal products	43	514	Data processing, internet publishing, and other information services
12	333	Machinery	48	HS	Housing
13	334	Computer and electronic products	49	ORE	Other real estate
14	335	Electrical equipment, appliances, and components	50	532RL	Rental and leasing services and lessors of intangible assets
15	3361MV	Motor vehicles, bodies and trailers, and parts	51	5411	Legal services
16	3364OT	Other transportation equipment	52	5415	Computer systems design and related services
17	337	Furniture and related products	53	5412OP	Miscellaneous professional, scientific, and technical services
18	339	Miscellaneous manufacturing	54	55	Management of companies and enterprises
19	311FT	Food and beverage and tobacco products	55	561	Administrative and support services
20	313TT	Textile mills and textile product mills	56	562	Waste management and remediation services
21	315AL	Apparel and leather and allied products	57	61	Educational services
22	322	Paper products	58	621	Ambulatory health care services
23	323	Printing and related support activities	59	622	Hospitals
24	324	Petroleum and coal products	60	623	Nursing and residential care facilities
25	325	Chemical products	61	624	Social assistance
26	326	Plastics and rubber products	62	711AS	Performing arts, spectator sports, museums, and related activities
			63	713	Amusements, gambling, and recreation industries
		Wholesale	64	721	Accommodation
27	42	Wholesale trade	65	722	Food services and drinking places
28	441	Motor vehicle and parts dealers	66	81	Other services, except government
29	445	Food and beverage stores			
30	452	General merchandise stores			Others (# 1-7,44-47,67-71)
31	4A0	Other retail			
32	481	Air transportation			
33	482	Rail transportation			
34	483	Water transportation			
35	484	Truck transportation			
36	485	Transit and ground passenger transportation			
37	486	Pipeline transportation			
38	487OS	Other transportation and support activities			
39	493	Warehousing and storage			

Introduction	A Parsimonious Model	Panel Data Regressions ○●○○○○○○	Quantitative Studies	Conclusion	References
Oil IV					

- Method: Identify macro equations with old shocks as IV (Barnichon and Mesters, 2020), similar idea as impulse response matching.
- **Exogeneity**: Oil prices exceeding the last 4 quarters (Hamilton, 1996), sudden surge as shocks.
- **Panel-IV**: Oil Shocks interacted with industry dummies (Nakamura and Steinsson, 2014).
- Other Use of Oil IV: Bonadio et al. (2021).

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

CORRELATION IN TIME SERIES

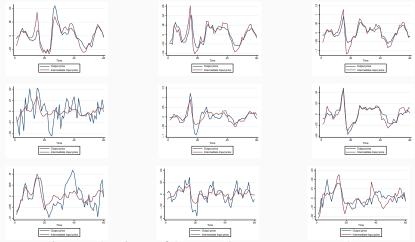
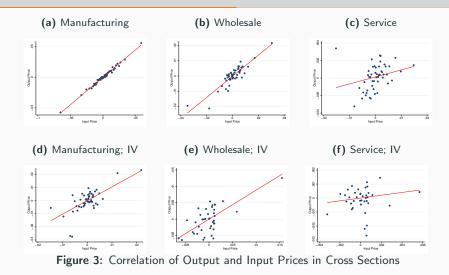



Figure 2: Correlation of Output and Input Prices in Time Series

Note: 3 industries within each sector (Manufacturing, Wholesale, Service) to illustrate. Those 3 industries have gross output shares roughly at the 10 percentile, 50 percentile and 90 percentile within each sector. Clear co-movement between output and input prices.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	0000000	0	

CORRELATION IN CROSS SECTIONS

Note: Binscatter plots; Net of quarter and industry fixed effects. The second row uses intermediate input prices projected on oil IV.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	00000000	0000000	0	

MISSING PASS-THROUGH

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Manu	Whole	Serv	Manu	Whole	Serv	Manu	Whole	Serv
	Price	Price	Price	Price Diff	Price Di				
Input Price	1.035***	0.886***	0.100						
	(0.186)	(0.200)	(0.137)						
Myopic Costm				1.198***	1.000***	0.081			
				(0.192)	(0.256)	(0.183)			
Dynamic Costm							1.294***	1.380***	0.078
							(0.205)	(0.248)	(0.209)
Observations	994	714	1,354	994	714	1,354	924	663	1,262
1st-stage F test (p-val)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Testing $\gamma^{\Phi} = 1$									
p-value (for χ^2)	0.849	0.570	0.000	0.302	0.999	0.000	0.151	0.125	0.000

Note: Standard errors are in parentheses and are clustered by industries.

• Robust to (1) restrictions on extreme values, (2) detrending methods (e,g, HP, polynomial, Hamilton), (3) controlling labor costs.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	00000000	0000000	0	

Size-dependent Pass-through?

Table 3: Summary Statistics of Output and Input Prices

	Obs.	Mean	S.D.	Percentiles						
				5 th	10 th	25 th	50 th	75 th	90 th	95 th
Manufacturing Sector										
Output price (HP)	994	0.0006	0.0203	-0.0237	-0.0174	-0.0064	0.0001	0.0060	0.0159	0.0249
Int. Input price (HP)	994	0.0007	0.0217	-0.0303	-0.0198	-0.0083	0.0014	0.0092	0.0195	0.0296
Service Sector										
Output price (HP)	1354	0.0002	0.0067	-0.0102	-0.0071	-0.0036	-0.0001	0.0034	0.0080	0.0114
Int. Input price (HP)	1354	0.0001	0.0053	-0.0069	-0.0049	-0.0024	0.0001	0.0022	0.0054	0.0084

• Concern: size-dependent pass-through (e.g. rational inattention)?

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	00000000	0000000	0	

TESTING SIZE-DEPENDENCE

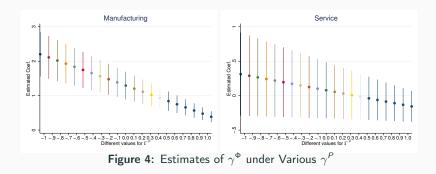

	(1)	(2)	(3)		(1)	(2)	(3)
	Manu	Whole	Serv		Manu	Whole	Serv
	Price Diff	Price Diff	Price Diff		Price Diff	Price Diff	Price D
Small shocks				Small shocks			
Dynamic Costm	-0.479	1.972*	-1.256	Dynamic Costm	1.213***	-0.213	0.222
	(0.343)	(1.057)	(1.395)		(0.0639)	(0.761)	(0.195
Obs.	222	263	810	Obs.	97	213	884
Time FE	Yes	Yes	Yes	Time FE	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Industry FE	Yes	Yes	Yes
Large shocks				Large shocks			
Dynamic Costm	1.283***	1.282***	0.241	Dynamic Costm	1.292***	1.465***	0.030
	(0.224)	(0.204)	(0.261)		(0.221)	(0.274)	(0.130
Obs.	702	400	452	Obs.	826	450	378
Time FE	Yes	Yes	Yes	Time FE	Yes	Yes	Yes
Industry FE	Yes	Yes	Yes	Industry FE	Yes	Yes	Yes

Table 4: Regressions Grouped By the Weighted Median of Cost Moves

- By size of input price fluctuations (left) or those projected on IV (right).
- No clear evidence of size-dependence.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

What If $\gamma^P > 0$?

- When $\gamma^P \in (0, 1)$, the manufacturing sector has γ^{Φ} around 1 and the service sector has γ^{Φ} around 0.
- We choose $\gamma^{\Phi} = 0.1$ for service sector and $\gamma^{\Phi} = 1$ otherwise.
- We choose $\gamma^P = 1 \gamma^{\Phi}$ in benchmark and $\gamma^P = 0$ for robustness.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	0000000	0	

INFLATION IN PANDEMIC

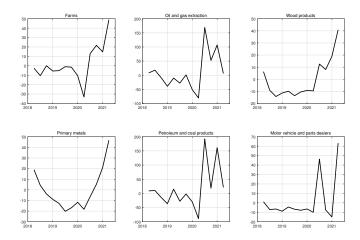


Figure 5: Inflation Gaps (APR) in 6 Leading Industries

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

PANDEMIC STUDY

• Why pandemic?

- Quasi-experiment: not that bad to say cost driven inflation.
- Large shocks: zoom in the role of service pass-through.
- Out-of-sample: external validity check of our model.
- Disconnection: unusual events worth exploring.
- How to study?
 - Match industry-level inflation gaps since 2018Q2 using markup shocks.
 - Simulate the model with only markups shocks before the service group.
 - **Compare** the benchmark model with data and alternative specifications for 2021Q1 and 2021Q2.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	0000000	0000000	0000000	0	

MODEL SOLUTION

- Parametric Assumption: $\xi_t = \rho \cdot \xi_{t-1} + \epsilon_t$.
- Equilibrium Law of Motion: $P_t = A \cdot P_{t-1} + B \cdot \xi_t$ in which

$$\begin{split} \mathbf{A} &= \mathbf{\Theta} + (\mathbb{I} - \mathbf{\Theta})(\mathbb{I} - \beta \mathbf{\Theta}) \sum_{s=0}^{+\infty} (\beta \mathbf{\Theta})^s (\Gamma^{\Phi} \alpha \Omega + \Gamma^{\mathsf{P}}) \mathbf{A}^{s+1}, \\ \mathbf{B} &= (\mathbb{I} - \mathbf{\Theta})(\mathbb{I} - \beta \mathbf{\Theta}) \sum_{s=0}^{+\infty} (\beta \mathbf{\Theta})^s \left[(\Gamma^{\Phi} \alpha \Omega + \Gamma^{\mathsf{P}}) \sum_{\tau=0}^{s} \mathbf{A}^{\tau} \mathbf{B} \rho^{s-\tau} + \rho^{s} \right]. \end{split}$$

• Equilibrium Price Dynamics:

$$\mathbf{P}_{t} = \sum_{s=0}^{+\infty} \left(\sum_{\tau=0}^{s} \mathbf{A}^{\tau} \mathbf{B} \boldsymbol{\rho}^{s-\tau} \right) \boldsymbol{\epsilon}_{t-s} \equiv \sum_{s=0}^{+\infty} \mathbf{I} \mathbf{R} \mathbf{F}_{s} \boldsymbol{\epsilon}_{t-s}.$$

in which \mathbf{IRF}_h is the *h* period ahead impulse response.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	0000000	0	

SHOCKS AND SIMULATION

- Calibration: $\rho = \rho \cdot \mathbb{I}$ and $\rho = 0.8$ from Smet et al. (2019).
- Shocks from Observations: one-to-one mapping as in DSGE models

$$\boldsymbol{\epsilon}_{t}^{\textit{simu}} = (\mathsf{IRF}_{0}^{\textit{model}})^{-1} \left(\mathsf{P}_{t}^{\textit{data}} - \sum_{s=1}^{t} \mathsf{IRF}_{s}^{\textit{model}} \cdot \boldsymbol{\epsilon}_{t-s}^{\textit{simu}} \right).$$

• Simulated Price Dynamics: Use diagonal matrix S to select shocks (39 shocks from non-service industries in the benchmark model)

$$\mathbf{P}_{t}^{simu} = \sum_{s=0}^{t} \mathbf{IRF}_{s}^{model} \cdot \mathbf{S} \cdot \boldsymbol{\epsilon}_{t-s}^{simu}.$$

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	0000000	0	

INDUSTRY INFLATION

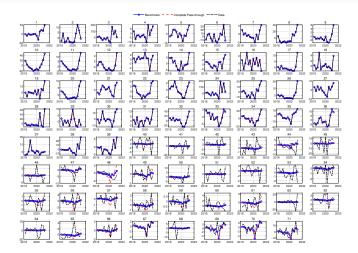


Figure 6: Industry-level Inflation Gaps (APR) with 39 Non-Service Shocks

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	00000000	0	

Aggregate Inflation

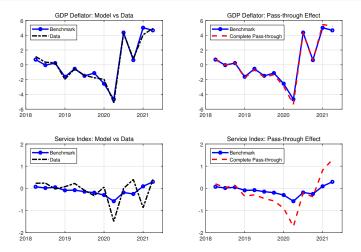


Figure 7: Aggregate-level Inflation Gaps (APR) with 39 Non-Service Shocks

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	00000000	0	

Alternative Models

Table 5: Inflation Gaps (APR) with 39 Non-Service Shocks

	2021Q1		2021Q2	
	GDP deflator	Service index	GDP deflator	Service index
	I	Benchmark Shoo	cks	
Data	4.07	-0.87	4.93	0.40
Benchmark	5.02	0.09	4.67	0.29
$\gamma^{\Phi}_{service} = 1$	5.45	0.82	5.24	1.29
$\gamma^{P}_{service} = 0$	5.00	0.06	4.56	0.10
$\Omega^{2005-2019}$	7.41	0.19	5.25	0.34
$\mathbf{\Omega}^{\mathit{uniform}}$	3.34	0.18	4.50	0.70
$\Theta^{uniform}$	3.10	0.07	4.40	0.40
6 shocks	3.84	0.07	2.30	0.11
	F	Recomputed Sho	cks	
$\gamma^{\Phi}_{\textit{service}} = 1$	5.43	0.81	5.24	1.29
$\gamma_{service}^{P} = 0$	4.98	0.06	4.58	0.10
ho=0.95	5.15	0.21	4.79	0.49

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies 0000000●	Conclusion	References
т					

LAKFAWAYS

- With non-service shocks, the benchmark model has a service inflation closer to data than the complete pass-through model ($\gamma^{\Phi} = 1$).
- Missing pass-through in the service sector accounts for about 1% of the missing service inflation.
- Neither hetero price rigidities nor hetero production networks are more important than the missing pass-through in the service sector.
- The simulated inflation is not sensitive to whether the model deviates from the Kimball aggregator, whether shocks are recomputed for each model, or whether markup wedge persistence is higher.

ntroduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion ●	References

Conclusions

- The missing pass-through in service sector explains more than 1/3 (1.0% out of 2.8%) of the recent missing service inflation.
- Potential future research on
 - the deep reasons for missing pass-through in service;
 - the sources of business cycles inferred from service inflation;
 - the design of monetary policy with a target on service inflation;
 - cross-country studies.

Introduction	A Parsimonious Model	Panel Data Regressions	Quantitative Studies	Conclusion	References
000	000000	0000000	0000000	0	

References

Amiti, Mary, Oleg Itskhoki, and Jozef Konings, "International Shocks, Variable Markups, and Domestic Prices," Review of Economic Studies, November 2019, 86 (6), 2356–2402.

- Barnichon, Regis and Geert Mesters, "Identifying Modern Macro Equations with Old Shocks," Quarterly Journal of Economics, 2020, 135 (4), 2255–2298.
- Bonadio, Barthélémy, Zhen Huo, Andrei A Levchenko, and Nitya Pandalai-Nayar, "Global Supply Chains in the Pandemic," Journal of International Economics, November 2021, 133, 103534.

Christiano, Lawrence J., Martin S. Eichenbaum, and Mathias Trabandt, "Unemployment and Business Cycles," Econometrica, 2016, 84 (4), 1523–1569.

- Hamilton, James D, "This is What Happened to the Oil Price-Macroeconomy Relationship," Journal of Monetary Economics, October 1996, 38 (2), 215–220.
- Nakamura, Emi and Jón Steinsson, "Fiscal Stimulus in a Monetary Union: Evidence from US Regions," American Economic Review, March 2014, 104 (3), 753–792.
- Smet, Frank, Joris Tielens, and Jan Van Hove, "Pipeline Pressures and Sectoral Inflation Dynamics," Working Paper, 2019.

Wang, Olivier and Iván Werning, "Dynamic Oligopoly and Price Stickiness," Working Paper, 2020.